Skip to main content

Chemical Approaches for Improving Plant Water Use

  • Protocol
  • First Online:
Abscisic Acid

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2462))

Abstract

Agricultural productivity in rain-fed crops has been threatened in recent decades due to increased instances of drought and diminishing freshwater resources. This has led to the development of novel chemical and genetic approaches for improving plant water use efficiency. Agrochemical water-banking with the aid of synthetic mimics of phytohormone abscisic acid (ABA) is one such approach, whereby plant transpiration can be chemically tuned to ensure water availability during critical stages of growth. Here, we describe the use of infrared thermography, a noninvasive quantitative technique to evaluate antitranspirant efficacy of existing ABA receptor agonists in crops such as wheat and tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nations FAAO of TU and Food and Agriculture Organization of the United Nations (2018) Tracking adaptation in agricultural sectors. FAO, Rome. https://doi.org/10.18356/87fe25de-en

    Book  Google Scholar 

  2. Daszkowska-Golec A (2016) The role of abscisic acid in drought stress: how ABA helps plants to cope with drought stress. In: Hossain MA, Wani SH, Bhattacharjee S et al (eds) Drought stress tolerance in plants, Vol 2: Molecular and genetic perspectives. Springer International Publishing, Cham, pp 123–151

    Chapter  Google Scholar 

  3. Nemali KS, Bonin C, Dohleman FG et al (2015) Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell Environ 38:1866–1880

    Article  Google Scholar 

  4. Çakir R (2004) Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop Res 89:1–16

    Article  Google Scholar 

  5. Park S-Y, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    Article  CAS  Google Scholar 

  6. Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    Article  CAS  Google Scholar 

  7. Cutler SR, Rodriguez PL, Finkelstein RR et al (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  8. Helander JDM, Vaidya AS, Cutler SR (2016) Chemical manipulation of plant water use. Bioorg Med Chem 24:493–500

    Article  CAS  Google Scholar 

  9. Frackenpohl J, Hans-Joachim Zeiss I, Heinemann I et al (2015) Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants. https://patentimages.storage.googleapis.com/85/bf/14/6a7bab7007eff7/US9173395.pdf

  10. Cutler SR, Wendeborn SV, Jung PJ et al (2016) Compounds that induce aba responses. https://patentimages.storage.googleapis.com/3c/8e/a5/53ecd16d2042a7/US20160280651A1.pdf

  11. Cutler SR and Okamoto M (2016) Synthetic compounds for vegetative ABA responses. https://patentimages.storage.googleapis.com/0d/77/e5/b485cd4b65b762/US9345245.pdf

  12. Dejonghe W, Okamoto M, Cutler SR (2018) Small molecule probes of ABA biosynthesis and signaling. Plant Cell Physiol 59:1490–1499

    Article  CAS  Google Scholar 

  13. Lachia MD, Wendeborn SV, Jung PJM et al (2018) 2-oxo-3,4-dihydroquinoline compounds as plant growth regulators. https://patentimages.storage.googleapis.com/02/4b/ee/fc4a6a0f677484/US20180044297A1.pdf

  14. Frackenpohl J, Bojack G, Helmke H et al (2017) Use of substitute oxo tetrahydroquinoline sulfonamides or salts thereof for raising stress tolerance of plants. https://patentimages.storage.googleapis.com/0d/e0/59/3fb3cd32900682/US20170027172A1.pdf

  15. Frackenpohl J, Bojack G, Helmke H et al (2016) Use of substituted dihydrooxindolylsulfonamides, or the salts thereof, for increasing the stress tolerance of plants. https://patentimages.storage.googleapis.com/cb/6e/25/842328f2b2cbef/US20160237035A1.pdf

  16. Frackenpohl J, Bojack G, Helmke H et al (2018) Substituted 1-cycloalkyl-2-oxotetrahydroquinolin-6-ylsulfonamides or salts thereof and use thereof to increase stress tolerance in plants. https://patentimages.storage.googleapis.com/6d/43/e5/67dd0ad006b0f2/US20180020662A1.pdf

  17. Frackenpohl J, Willms L, and Dittgen J (2017) Substituted cyano cycloalkyl penta-2, 4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2, 4-dienes and cyano heterocyclyl pent-2-en-4-ynes as … . https://patents.google.com/patent/US20170210701A1/en

  18. Frackenpohl J, Heinemann I, Müller T et al (2011) Aryl-and hetarylsulfonamides as active ingredients against abiotic plant stress. https://patentimages.storage.googleapis.com/a7/2d/ea/8a60a636e4fdd7/US20110230350A1.pdf

  19. Cutler SR, Lachia MD, Wendeborn SV et al (2018) Carbamate quinabactin. https://patentimages.storage.googleapis.com/65/27/d8/68509d60cc0199/WO2018017490A1.pdf

  20. Godfrey CRA, Lachia MD, Wendeborn SV et al (2018) Plant growth regulator compounds. https://patentimages.storage.googleapis.com/87/fd/61/816a6c284d84f1/WO2018007217A1.pdf

  21. Cutler SR, Wendeborn SV, Loiseleur O et al (2018) Derivatives of halo quinabactin. https://patentimages.storage.googleapis.com/af/59/c9/c06faa2b1d5db6/US20180312470A1.pdf

  22. Vaidya AS, Peterson FC, Yarmolinsky D et al (2017) A rationally designed agonist defines subfamily IIIA abscisic acid receptors as critical targets for manipulating transpiration. ACS Chem Biol 12:2842–2848

    Article  CAS  Google Scholar 

  23. Elzinga D, Sternburg E, Sabbadin D et al (2019) Defining and exploiting hypersensitivity hotspots to facilitate abscisic acid agonist optimization. ACS Chem Biol 14:332–336

    Article  CAS  Google Scholar 

  24. Weiner JJ, Peterson FC, Volkman BF et al (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    Article  CAS  Google Scholar 

  25. Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K et al (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18:259–266

    Article  CAS  Google Scholar 

  26. Vaidya AS, Helander JDM, Peterson FC et al (2019) Dynamic control of plant water use using designed ABA receptor agonists. Science 366:446–454

    Article  Google Scholar 

  27. Okamoto M, Peterson FC, Defries A et al (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci U S A 110:12132–12137

    Article  CAS  Google Scholar 

  28. Cao M-J, Zhang Y-L, Liu X et al (2017) Combining chemical and genetic approaches to increase drought resistance in plants. Nat Commun 8:1183

    Article  Google Scholar 

  29. Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tomato (UC-82) and wheat (Cal Rojo) varieties used for thermography experiments were gifts from Prof. Linda Walling, University of California, Riverside and Prof. Adam Lukaszewsky, University of California, Riverside, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya S. Vaidya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vaidya, A.S., Cutler, S.R. (2022). Chemical Approaches for Improving Plant Water Use. In: Yoshida, T. (eds) Abscisic Acid. Methods in Molecular Biology, vol 2462. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2156-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2156-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2155-4

  • Online ISBN: 978-1-0716-2156-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics