Skip to main content

Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq

  • Protocol
  • First Online:
Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2458))

Abstract

A hallmark feature of active cis-regulatory elements (CREs) in eukaryotes is their nucleosomal depletion and, accordingly, higher accessibility to enzymatic treatment. This property has been the basis of a number of sequencing-based assays for genome-wide identification and tracking the activity of CREs across different biological conditions, such as DNAse-seq, ATAC-seq , NOMeseq, and others. However, the fragmentation of DNA inherent to many of these assays and the limited read length of short-read sequencing platforms have so far not allowed the simultaneous measurement of the chromatin accessibility state of CREs located distally from each other. The combination of labeling accessible DNA with DNA modifications and nanopore sequencing has made it possible to develop such assays. Here, we provide a detailed protocol for carrying out the SMAC-seq assay (Single-Molecule long-read Accessible Chromatin mapping sequencing), in its m6A-SMAC-seq and m6A-CpG-GpC-SMAC-seq variants, together with methods for data processing and analysis, and discuss key experimental and analytical considerations for working with SMAC-seq datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu C (1980) The 50 ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286(5776):854–860

    Article  CAS  PubMed  Google Scholar 

  2. Keene MA, Corces V, Lowenhaupt K et al (1981) DNase I hypersensitive sites in Drosophila chromatin occur at the 50 ends of regions of transcription. Proc Natl Acad Sci U S A 78:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGhee JD, Wood WI, Dolan M et al (1981) A 200 base pair region at the 50 end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell 27:45–55

    Article  CAS  PubMed  Google Scholar 

  4. Dorschner MO, Hawrylycz M, Humbert R et al (2004) High-throughput localization of functional elements by quantitative chromatin profiling. Nat Methods 1:219–225

    Article  CAS  PubMed  Google Scholar 

  5. Sabo PJ, Humbert R, Hawrylycz M et al (2004) Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc Natl Acad Sci U S A 101:4537–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabo PJ, Kuehn MS, Thurman R et al (2006) Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3:511–518

    Article  CAS  PubMed  Google Scholar 

  7. Crawford GE, Holt IE, Whittle J et al (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyle AP, Davis S, Shulha HP et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thurman RE, Rynes E, Humbert R et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cusanovich DA, Daza R, Adey A et al (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348(6237):910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chereji RV, Eriksson PR, Ocampo J, Clark DJ (2019) DNA accessibility is not the primary determinant of chromatin-mediated gene regulation. bioRxiv:639971

    Google Scholar 

  14. Ponnaluri VKC, Zhang G, Estève PO et al (2017) NicE-seq: high resolution open chromatin profiling. Genome Biol 18(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  15. Umeyama T, Ito T (2017) DMS-seq for in vivo genome-wide mapping of protein-DNA interactions and nucleosome centers. Cell Rep 21(1):289–300

    Article  CAS  PubMed  Google Scholar 

  16. Timms RT, Tchasovnikarova IA, Lehner PJ (2019) Differential viral accessibility (DIVA) identifies alterations in chromatin architecture through large-scale mapping of lentiviral integration sites. Nat Protoc 14(1):153–170

    Article  CAS  PubMed  Google Scholar 

  17. Kelly TK, Liu Y, Lay FD et al (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22(12):2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krebs AR, Imanci D, Hoerner L, Gaidatzis D et al (2017) Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol Cell 67(3):411–422.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaisvila R, Ponnaluri VKC, Sun Z et al (2019) EM-seq: detection of DNA methylation at single base resolution from picograms of DNA. bioRxiv:2019.12.20.884692

    Google Scholar 

  20. Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410

    Article  CAS  PubMed  Google Scholar 

  21. Rand AC, Jain M, Eizenga JM et al (2017) Mapping DNA methylation with highthroughput nanopore sequencing. Nat Methods 14:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shipony Z, Marinov GK, Swaffer MP et al (2020) Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat Methods 17:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Wang A, Liu Z et al (2019) Singlemolecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res 29:1329–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aughey GN, Estacio Gomez A, Thomson J et al (2018) CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. eLife 7:e32341

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schones DE, Cui K, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  CAS  PubMed  Google Scholar 

  26. Hesselberth JR, Chen X, Zhang Z et al (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6(4):283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neph S, Vierstra J, Stergachis AB et al (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murray IA, Morgan RD, Luyten Y et al (2018) The non-specific adenine DNA methyltransferase M.EcoGII. Nucleic Acids Res 46:840–848

    Article  CAS  PubMed  Google Scholar 

  29. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  30. Kuhn RM, Haussler D, Kent WJ (2013) The UCSC genome browser and associated tools. Brief Bioinform 14:144–161

    Article  CAS  PubMed  Google Scholar 

  31. Kent WJ, Zweig AS, Barber G et al (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32(14):2103–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stoiber MH, Quick J, Egan R, Lee JE, Celniker SE, Neely R, Loman N, Pennacchio L, Brown JB (2017) De novo identification of DNA modifications enabled by genomeguided nanopore signal processing. bioRxiv:094672

    Google Scholar 

  34. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27(11):1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brogaard K, Xi L, Wang JP, Widom J (2012) A map of nucleosome positions in yeast at base-pair resolution. Nature 486(7404):496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4(7):e1000138

    Article  PubMed  PubMed Central  Google Scholar 

  37. Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57(5):753–761

    Article  CAS  PubMed  Google Scholar 

  38. Goetze H, Wittner M, Hamperl S, Hondele M, Merz K, Stoeckl U, Griesenbeck J (2010) Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Mol Cell Biol 30(8):2028–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schep AN, Buenrostro JD, Denny SK et al (2015) Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res 25:1757–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank members of the Greenleaf and Kundaje labs for many helpful discussions. This work was supported by NIH grants UM1HG009436 and P50HG007735 (to W.J.G.). W.J.G. is a Chan Zuckerberg investigator. Z.S. is supported by EMBO Long-Term Fellowship EMBO ALTF 1119-2016 and by Human Frontier Science Program LongTerm Fellowship HFSP LT 000835/2017-L. G.K.M. was supported by the Stanford School of Medicine Dean’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georgi K. Marinov or Zohar Shipony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marinov, G.K., Shipony, Z., Kundaje, A., Greenleaf, W.J. (2022). Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics