Skip to main content

Measuring Mouse Somatosensory Reflexive Behaviors with High-Speed Videography, Statistical Modeling, and Machine Learning

  • Protocol
  • First Online:
Contemporary Approaches to the Study of Pain

Part of the book series: Neuromethods ((NM,volume 178))

Abstract

Objectively measuring and interpreting an animal’s sensory experience remains a challenging task. This is particularly true when using preclinical rodent models to study pain mechanisms and screen for potential new pain treatment reagents. How to determine their pain states in a precise and unbiased manner is a hurdle that the field will need to overcome. Here, we describe our efforts to measure mouse somatosensory reflexive behaviors with greatly improved precision by high-speed video imaging. We describe how coupling subsecond ethograms of reflexive behaviors with a statistical reduction method and supervised machine learning can be used to create a more objective quantitative mouse “pain scale.” Our goal is to provide the readers with a protocol of how to integrate some of the new tools described here with currently used mechanical somatosensory assays, while discussing the advantages and limitations of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melzack R (1975) The McGill pain questionnaire: major properties and scoring methods. Pain 1(3):277–299

    Article  PubMed  Google Scholar 

  2. Hawker GA et al (2011) Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short Form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP). Arthritis Care Res (Hoboken) 63(Suppl 11):S240–S252

    Article  Google Scholar 

  3. Garra G et al (2010) Validation of the Wong-baker FACES pain rating scale in pediatric emergency department patients. Acad Emerg Med 17(1):50–54

    Article  PubMed  Google Scholar 

  4. Daut RL, Cleeland CS, Flanery RC (1983) Development of the Wisconsin brief pain questionnaire to assess pain in cancer and other diseases. Pain 17(2):197–210

    Article  PubMed  Google Scholar 

  5. Bennett M (2001) The LANSS pain scale: the Leeds assessment of neuropathic symptoms and signs. Pain 92(1–2):147–157

    Article  CAS  PubMed  Google Scholar 

  6. Kim KJ, Yoon YW, Chung JM (1997) Comparison of three rodent neuropathic pain models. Exp Brain Res 113(2):200–206

    Article  CAS  PubMed  Google Scholar 

  7. Gregory NS et al (2013) An overview of animal models of pain: disease models and outcome measures. J Pain 14(11):1255–1269

    Article  PubMed  Google Scholar 

  8. Burma NE et al (2017) Animal models of chronic pain: advances and challenges for clinical translation. J Neurosci Res 95(6):1242–1256

    Article  CAS  PubMed  Google Scholar 

  9. Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10(4):283–294

    Article  CAS  PubMed  Google Scholar 

  10. Fried NT et al (2020) Improving pain assessment in mice and rats with advanced videography and computational approaches. Pain 161(7):1420–1424

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vardeh D, Mannion RJ, Woolf CJ (2016) Toward a mechanism-based approach to pain diagnosis. J Pain 17(9 Suppl):T50–T69

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berge OG (2011) Predictive validity of behavioural animal models for chronic pain. Br J Pharmacol 164(4):1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kissin I (2010) The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth Analg 110(3):780–789

    Article  CAS  PubMed  Google Scholar 

  14. Woolf CJ (2010) Overcoming obstacles to developing new analgesics. Nat Med 16(11):1241–1247

    Article  CAS  PubMed  Google Scholar 

  15. Tyers MB (1980) A classification of opiate receptors that mediate Antinociception in animals. Br J Pharmacol 69(3):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basbaum AI (1973) Conduction of the effects of noxious stimulation by short-fiber multisynaptic systems of the spinal cord in the rat. Exp Neurol 40(3):699–716

    Article  CAS  PubMed  Google Scholar 

  17. Hardy JD (1956) The nature of pain. J Chronic Dis 4(1):22–51

    Article  CAS  PubMed  Google Scholar 

  18. Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53(4):597–652

    PubMed  Google Scholar 

  19. Barrot M (2012) Tests and models of nociception and pain in rodents. Neuroscience 211:39–50

    Article  CAS  PubMed  Google Scholar 

  20. Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 10:284

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taiwo YO, Coderre TJ, Levine JD (1989) The contribution of training to sensitivity in the nociceptive paw-withdrawal test. Brain Res 487(1):148–151

    Article  CAS  PubMed  Google Scholar 

  22. LaBuda CJ, Fuchs PN (2000) A behavioral test paradigm to measure the aversive quality of inflammatory and neuropathic pain in rats. Exp Neurol 163(2):490–494

    Article  CAS  PubMed  Google Scholar 

  23. Pitcher GM, Ritchie J, Henry JL (1999) Paw withdrawal threshold in the von Frey hair test is influenced by the surface on which the rat stands. J Neurosci Methods 87(2):185–193

    Article  CAS  PubMed  Google Scholar 

  24. Hargreaves K et al (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  25. Cheah M, Fawcett JW, Andrews MR (2017) Assessment of thermal pain sensation in rats and mice using the Hargreaves test. Bio Protoc 7(16):e2506

    Article  PubMed  PubMed Central  Google Scholar 

  26. Santos ARS, Calixto JB (1997) Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 31(4):381–389

    Article  CAS  PubMed  Google Scholar 

  27. Langford DJ et al (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7(6):447–449

    Article  CAS  PubMed  Google Scholar 

  28. Neubert JK et al (2008) Characterization of mouse orofacial pain and the effects of lesioning TRPV1-expressing neurons on operant behavior. Mol Pain 4:43

    PubMed  PubMed Central  Google Scholar 

  29. Nolan TA et al (2012) Placebo-induced analgesia in an operant pain model in rats. Pain 153(10):2009–2016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mauderli AP, Acosta-Rua A, Vierck CJ (2000) An operant assay of thermal pain in conscious, unrestrained rats. J Neurosci Methods 97(1):19–29

    Article  CAS  PubMed  Google Scholar 

  31. Dolan JC et al (2010) The dolognawmeter: a novel instrument and assay to quantify nociception in rodent models of orofacial pain. J Neurosci Methods 187(2):207–215

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rohrs EL et al (2015) A novel operant-based behavioral assay of mechanical allodynia in the orofacial region of rats. J Neurosci Methods 248:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neubert JK et al (2005) Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain 116(3):386–395

    Article  PubMed  Google Scholar 

  34. Andrews K, Fitzgerald M (1994) The cutaneous withdrawal reflex in human neonates: sensitization, receptive fields, and the effects of contralateral stimulation. Pain 56(1):95–101

    Article  PubMed  Google Scholar 

  35. Andersen OK et al (2005) Gradual enlargement of human withdrawal reflex receptive fields following repetitive painful stimulation. Brain Res 1042(2):194–204

    Article  CAS  PubMed  Google Scholar 

  36. Morch CD et al (2007) Nociceptive withdrawal reflexes evoked by uniform-temperature laser heat stimulation of large skin areas in humans. J Neurosci Methods 160(1):85–92

    Article  PubMed  Google Scholar 

  37. Basbaum AI et al (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Besson JM (1999) The neurobiology of pain. Lancet 353(9164):1610–1615

    Article  CAS  PubMed  Google Scholar 

  39. Dubner R, Gold M (1999) The neurobiology of pain. Proc Natl Acad Sci U S A 96(14):7627–7630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huggins JP et al (2012) An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 153(9):1837–1846

    Article  CAS  PubMed  Google Scholar 

  41. Hill R (2000) NK1 (substance P) receptor antagonists--why are they not analgesic in humans? Trends Pharmacol Sci 21(7):244–246

    Article  CAS  PubMed  Google Scholar 

  42. Negus SS et al (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319(2):507–514

    Article  CAS  PubMed  Google Scholar 

  43. Borsook D et al (2014) Lost but making progress--Where will new analgesic drugs come from? Sci Transl Med 6(249):249sr3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yekkirala AS et al (2017) Breaking barriers to novel analgesic drug development. Nat Rev Drug Discov 16(8):545–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark JD (2016) Preclinical pain research: can we do better? Anesthesiology 125(5):846–849

    Article  CAS  PubMed  Google Scholar 

  46. Yekkirala AS et al (2017) Breaking barriers to novel analgesic drug development. Nat Rev Drug Discov 16(11):810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murthy SE et al (2018) The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci Transl Med 10(462):eaat9897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bourane S et al (2015) Identification of a spinal circuit for light touch and fine motor control. Cell 160(3):503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng L et al (2017) Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat Neurosci 20(6):804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y et al (2018) Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature 561(7724):547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dhandapani R et al (2018) Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat Commun 9(1):1640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Francois A et al (2015) The low-threshold Calcium Channel Cav3.2 determines low-threshold mechanoreceptor function. Cell Rep 10(3):370–382

    Article  CAS  PubMed  Google Scholar 

  53. Woo SH et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509(7502):622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Severson KS et al (2017) Active touch and self-motion encoding by Merkel cell-associated afferents. Neuron 94(3):666–676 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Douglass AD et al (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18(15):1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krupa DJ et al (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21(15):5752–5763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. May ES et al (2017) Behavioral responses to noxious stimuli shape the perception of pain. Sci Rep 7:44083

    Article  PubMed  PubMed Central  Google Scholar 

  58. Browne LE et al (2017) Time-resolved fast mammalian behavior reveals the complexity of protective pain responses. Cell Rep 20(1):89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arcourt A et al (2017) Touch receptor-derived sensory information alleviates acute pain signaling and fine-tunes nociceptive reflex coordination. Neuron 93(1):179–193

    Article  CAS  PubMed  Google Scholar 

  60. Blivis D et al (2017) Identification of a novel spinal nociceptive-motor gate control for Adelta pain stimuli in rats. Elife 6:e23584

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abdus-Saboor I et al (2019) Development of a mouse pain scale using sub-second behavioral mapping and statistical modeling. Cell Rep 28(6):1623–1634 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Madisen L et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Olson W et al (2017) Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors. Elife 6:e29507

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cavanaugh DJ et al (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31(13):5067–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim YS et al (2016) Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 91(5):1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anderson M, Zheng Q, Dong X (2018) Investigation of pain mechanisms by calcium imaging approaches. Neurosci Bull 34(1):194–199

    Article  CAS  PubMed  Google Scholar 

  67. Han L et al (2018) Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness. Nat Neurosci 21(3):324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462

    Article  CAS  PubMed  Google Scholar 

  69. Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  70. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306(5944):686–688

    Article  CAS  PubMed  Google Scholar 

  71. Daou I et al (2013) Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 33(47):18631–18640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Husson SJ et al (2012) Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Curr Biol 22(9):743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carr FB, Zachariou V (2014) Nociception and pain: lessons from optogenetics. Front Behav Neurosci 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  74. Corder G et al (2017) Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 23(2):164–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Corder G et al (2019) An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363(6424):276–281

    Article  CAS  PubMed  Google Scholar 

  76. Ringner M (2008) What is principal component analysis? Nat Biotechnol 26(3):303–304

    Article  CAS  PubMed  Google Scholar 

  77. Tarca AL et al (2007) Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Duan B et al (2014) Identification of spinal circuits transmitting and gating mechanical pain. Cell 159(6):1417–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stemkowski P et al (2016) TRPV1 nociceptor activity initiates USP5/T-type channel-mediated plasticity. Cell Rep 17(11):2901–2912

    Article  CAS  PubMed  Google Scholar 

  80. Sophia V et al (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493(7434):669–673

    Article  CAS  Google Scholar 

  81. Huang T et al (2019) Identifying the pathways required for coping behaviours associated with sustained pain. Nature 565(7737):86–90

    Article  CAS  PubMed  Google Scholar 

  82. Beaudry H et al (2017) Distinct behavioral responses evoked by selective optogenetic stimulation of the major TRPV1+ and MrgD+ subsets of C-fibers. Pain 158(12):2329–2339

    Article  CAS  PubMed  Google Scholar 

  83. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

    Article  PubMed  Google Scholar 

  84. De Vry J et al (2004) Pharmacological characterization of the chronic constriction injury model of neuropathic pain. Eur J Pharmacol 491(2–3):137–148

    Article  PubMed  CAS  Google Scholar 

  85. Hogan Q et al (2004) Detection of neuropathic pain in a rat model of peripheral nerve injury. Anesthesiology 101(2):476–487

    Article  PubMed  Google Scholar 

  86. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363

    Article  Google Scholar 

  87. Chung JM, Kim HK, Chung K (2004) Segmental spinal nerve ligation model of neuropathic pain. Methods Mol Med 99:35–45

    PubMed  Google Scholar 

  88. Shields SD, Eckert WA 3rd, Basbaum AI (2003) Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J Pain 4(8):465–470

    Article  PubMed  Google Scholar 

  89. Malmberg AB, Basbaum AI (1998) Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 76(1–2):215–222

    Article  CAS  PubMed  Google Scholar 

  90. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2):205–218

    Article  PubMed  Google Scholar 

  91. Lindenlaub T, Sommer C (2000) Partial sciatic nerve transection as a model of neuropathic pain: a qualitative and quantitative neuropathological study. Pain 89(1):97–106

    Article  PubMed  Google Scholar 

  92. Djouhri L et al (2006) Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 26(4):1281–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prkachin KM (1992) Dissociating spontaneous and deliberate expressions of pain: signal detection analyses. Pain 51(1):57–65

    Article  PubMed  Google Scholar 

  94. Ma L et al (2019) Spontaneous pain disrupts ventral hippocampal CA1-Infralimbic cortex connectivity and modulates pain progression in rats with peripheral inflammation. Cell Rep 29(6):1579–1593 e6

    Article  CAS  PubMed  Google Scholar 

  95. Baliki MN et al (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Geha PY et al (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128(1–2):88–100

    Article  CAS  PubMed  Google Scholar 

  97. Qu C et al (2011) Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain 152(7):1641–1648

    Article  PubMed  PubMed Central  Google Scholar 

  98. Parks EL et al (2011) Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain. Eur J Pain 15(8):843 e1–14

    PubMed  Google Scholar 

  99. Foss JM, Apkarian AV, Chialvo DR (2006) Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain states. J Neurophysiol 95(2):730–736

    Article  PubMed  Google Scholar 

  100. Haroutounian S et al (2014) Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain 155(7):1272–1279

    Article  PubMed  Google Scholar 

  101. King T et al (2011) Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. Pain 152(9):1997–2005

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tuttle AH et al (2018) A deep neural network to assess spontaneous pain from mouse facial expressions. Mol Pain 14:1744806918763658

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wiltschko AB et al (2015) Mapping sub-second structure in mouse behavior. Neuron 88(6):1121–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sperry MM et al (2018) Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model. Sci Rep 8(1):13894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rossi HL et al (2020) Evoked and spontaneous pain assessment during tooth pulp injury. Sci Rep 10(1):2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leach MC et al (2012) The assessment of post-vasectomy pain in mice using behaviour and the mouse grimace scale. PLoS One 7(4):e35656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matsumiya LC et al (2012) Using the mouse grimace scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J Am Assoc Lab Anim Sci 51(1):42–49

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sotocinal SG et al (2011) The rat grimace scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 7:55

    PubMed  PubMed Central  Google Scholar 

  109. Miller A et al (2015) The effect of isoflurane anaesthesia and buprenorphine on the mouse grimace scale and behaviour in CBA and DBA/2 mice. Appl Anim Behav Sci 172:58–62

    Article  PubMed  PubMed Central  Google Scholar 

  110. Oliver V et al (2014) Psychometric assessment of the rat grimace scale and development of an analgesic intervention score. PLoS One 9(5):e97882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Akintola T et al (2017) The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol Pain 2:13–17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ishmail Abdus-Saboor or Wenqin Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abdus-Saboor, I., Luo, W. (2022). Measuring Mouse Somatosensory Reflexive Behaviors with High-Speed Videography, Statistical Modeling, and Machine Learning. In: Seal, R.P. (eds) Contemporary Approaches to the Study of Pain. Neuromethods, vol 178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2039-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2039-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2038-0

  • Online ISBN: 978-1-0716-2039-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics