Skip to main content

Production of Laccases from Agricultural Wastes: Strain Isolation and Selection, Enzymatic Profiling, and Lab-Scale Production

  • Protocol
  • First Online:
Mycoremediation Protocols

Abstract

Fungal laccases (copper-containing oxidases) have profound applications in bioremediation and various other industrial and biotechnological areas. This chapter outlines recent developments in laccase production technologies, with a focus on the selection of the most promising producing fungal species, general considerations on media components and culture conditions, lab-scale production, and partial purification of enzymes. Furthermore, protocols related to solid-state fermentation (utilizing agriculture wastes), such as one-step affinity chromatography (employing a mesoporous material as support), and electrophoresis (used to check the enzyme purity), are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Z, Harrison MD, Rackemann DW et al (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381

    Article  Google Scholar 

  2. Yoo CG, Li M, Meng X et al (2017) Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chem 19:2006–2016

    Article  CAS  Google Scholar 

  3. Salvachúa D, Katahira R, Cleveland NS et al (2016) Lignin depolymerization by fungal secretomes and a microbial sink. Green Chem 18:6046–6062

    Article  Google Scholar 

  4. Giacobbe S, Pezzella C, Lettera V et al (2018) Laccase pretreatment for agrofood wastes valorization. Bioresour Technol 265:59–65

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed PM, de Figueroa LIC, Pajot HF (2020) Dual purpose of ligninolytic- basidiomycetes: mycoremediation of bioethanol distillation vinasse coupled to sustainable bio-based compounds production. Fungal Biol Rev 34:25–40

    Article  Google Scholar 

  6. Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23

    Article  Google Scholar 

  7. Schneider WDH, Fontana RC, Baudel HM et al (2020) Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energy 262:114493

    Article  CAS  Google Scholar 

  8. Senthivelan T, Kanagaraj J, Panda RC et al (2019) Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnol Rep 23:e00344

    Article  CAS  Google Scholar 

  9. Mazumder S, Basu SK, Mukherjee M (2009) Laccase production in solid-state and submerged fermentation by Pleurotus ostreatus. Eng Life Sci 9:45–52

    Article  CAS  Google Scholar 

  10. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  11. Xu X, Lin M, Zang Q et al (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95

    Article  CAS  PubMed  Google Scholar 

  12. Baldrian P, Abadulla E, Tzanov T et al (2006) Fungal laccases - occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  13. Wang F, Terry N, Xu L et al (2019) Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: a review. Microorganisms 7:665

    Article  CAS  PubMed Central  Google Scholar 

  14. Banerjee UC, Vohra RM (1991) Production of laccase by Curvularia sp. Folia Microbiol (Praha) 36:343–346

    Article  CAS  Google Scholar 

  15. Kumar R, Kaur J, Jain S et al (2016) Optimization of laccase production from Aspergillus flavus by design of experiment technique: partial purification and characterization. J Genet Eng Biotechnol 14:125–131

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhu B, Chen Y, Wei N (2019) Engineering biocatalytic and biosorptive materials for environmental applications. Trends Biotechnol 37:661–676

    Article  CAS  PubMed  Google Scholar 

  17. Vasconcelos AFD, Barbosa AM, Dekker RFH et al (2000) Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem 35:1131–1138

    Article  CAS  Google Scholar 

  18. Chakroun H, Mechichi T, Martinez MJ et al (2010) Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Process Biochem 45:507–513

    Article  CAS  Google Scholar 

  19. Zhu X, Williamson PR (2004) Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Machonkin TE, Quintanar L, Palmer AE et al (2001) Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases. J Am Chem Soc 123:5507–5517

    Article  CAS  PubMed  Google Scholar 

  21. Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426

    Article  CAS  PubMed  Google Scholar 

  22. Mishra A, Kumar S, Pandey KA (2011) Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. Int Biodeterior Biodegrad 65:487–493

    Article  CAS  Google Scholar 

  23. Lacey LA, Brooks WM (1997) Initial handling and diagnosis of diseased insects. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, San Diego

    Google Scholar 

  24. Sadeghian-Abadi S, Rezaei S, Yousefi-Mokri M et al (2019) Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme. J Environ Manag 244:235–246

    Article  CAS  Google Scholar 

  25. Kurtzman CP, Fell JW, Boekhout T (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  26. Fernandez RD, Bulacio N, Álvarez A et al (2017) Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina. Antonie Van Leeuwenhoek 110:1207–1218

    Article  PubMed  Google Scholar 

  27. Maza M, Pajot HF, Amoroso MJ et al (2014) Post-harvest sugarcane residue degradation by autochthonous fungi. Int Biodeterior Biodegrad 87:18–25

    Article  CAS  Google Scholar 

  28. Ahmed PM, Pajot HF, de Figueroa LIC et al (2018) Sustainable bioremediation of sugarcane vinasse using autochthonous macrofungi. J Environ Chem Eng 6:5177–5185

    Article  CAS  Google Scholar 

  29. Ruiz-Dueñas FJ, Lundell T, Floudas D et al (2013) Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105:1428–1444

    Article  PubMed  Google Scholar 

  30. Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y et al (2012) Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 287:16903–16916

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  32. Martani F, Beltrametti F, Porro D et al (2017) The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiol Lett 364:134

    Article  Google Scholar 

  33. Unuofin JO, Okoh AI, Nwodo UU (2019) Aptitude of oxidative enzymes for treatment of wastewater pollutants: a laccase perspective. Molecules 24:1–36

    Article  Google Scholar 

  34. Hatvani N, Mécs I (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochem 37:491–496

    Article  Google Scholar 

  35. Toca-Herrera JL, Osma JF, Rodriguez Couto S (2007) Potential of solid-state fermentation for laccase production. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz

    Google Scholar 

  36. Karp SG, Faraco V, Amore A et al (2015) Statistical optimization of laccase production and delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. BioMed Resour Int. Article ID 181204. https://doi.org/10.1155/2015/181204

  37. Postemsky PD, Bidegain MA, González-Matute R et al (2017) Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Bioresour Technol 231:85–93

    Article  CAS  PubMed  Google Scholar 

  38. Daâssi D, Zouari-Mechichi H, Frikha F et al (2016) Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization. J Environ Heal Sci Eng 14:1

    Article  Google Scholar 

  39. Liu J, Liu B, Zhan L et al (2017) Solid-state fermentation of ammoniated corn straw to animal feed by Pleurotus ostreatus Pl-5. Bioresources 12:1723–1736

    Article  CAS  Google Scholar 

  40. Albornoz S, Wyman V, Palma C et al (2018) Understanding of the contribution of the fungal treatment conditions in a wheat straw biorefinery that produces enzymes and biogas. Biochem Eng J 140:140–147

    Article  CAS  Google Scholar 

  41. Singh P, Sulaiman O, Hashim R et al (2013) Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor. Int Biodeterior Biodegrad 82:96–103

    Article  CAS  Google Scholar 

  42. Aydınôglu T, Sargın S (2013) Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst Eng 36:215–222

    Article  PubMed  Google Scholar 

  43. Zeng S, Zhao J, Xia L (2017) Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Bioprocess Biosyst Eng 40:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adekunle AE, Zhang C, Guo C et al (2017) Laccase production from Trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valoriz 8:153–159

    Article  CAS  Google Scholar 

  45. Jaramillo AC, Cobas M, Hormaza A et al (2017) Degradation of adsorbed azo dye by solid-state fermentation: improvement of culture conditions, a kinetic study, and rotating drum bioreactor performance. Water Air Soil Pollut 228:205

    Article  Google Scholar 

  46. Lonappan L, Rouissi T, Laadila MA et al (2017) Agro-industrial produced laccase for degradation of diclofenac and identification of transformation products. ACS Sustain Chem Eng 5:5772–5781

    Article  CAS  Google Scholar 

  47. Singh J, Kumar P, Saharan V et al (2019) Simultaneous laccase production and transformation of bisphenol-A and triclosan using Trametes versicolor. 3 Biotech 9:129

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bazanella GCD, de Souza DF, Castoldi R et al (2013) Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization. Folia Microbiol (Praha) 58:641–647

    Article  CAS  Google Scholar 

  49. Economou CN, Diamantopoulou PA, Philippoussis AN (2017) Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains. Appl Microbiol Biotechnol 101:5213–5222

    Article  CAS  PubMed  Google Scholar 

  50. Dhillon GS, Kaur S, Brar SK (2012) In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int Biodeterior Biodegrad 72:67–75

    Article  CAS  Google Scholar 

  51. Zimbardi ALRL, Camargo PF, Carli S et al (2016) A high redox potential laccase from Pycnoporus sanguineus RP15: potential application for dye decolorization. Int J Mol Sci 17:672

    Article  PubMed Central  Google Scholar 

  52. Sharma A, Gupta V, Khan M et al (2017) Flavonoid-rich agro-industrial residues for enhanced bacterial laccase production by submerged and solid-state fermentation. 3 Biotech 7:200

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cabrera R, Lopez-Pena D, Asaff A et al (2018) Bioavailability of compounds susceptible to enzymatic oxidation enhances growth of Shiitake medicinal mushroom (Lentinus edodes) in solid-state fermentation with vineyard prunings. Int J Med Mushrooms 20:291–303

    Article  PubMed  Google Scholar 

  54. Mishra V, Jana AK, Jana MM et al (2017) Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour Technol 236:49–59

    Article  CAS  PubMed  Google Scholar 

  55. Vikineswary S, Abdullah N, Renuvathani M et al (2006) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177

    Article  CAS  PubMed  Google Scholar 

  56. Jović J, Hao J, Kocić-Tanackov S et al (2020) Improvement of lignocellulosic biomass conversion with fungal ligninolytic enzymes and molasses stillage supplementation. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00929-1

  57. Jović J, Buntić A, Radovanović N et al (2018) Lignin-degrading abilities of novel autochthonous fungal isolates Trametes hirsuta F13 and Stereum gausapatum F28. Food Technol Biotechnol 56:354–365

    Article  PubMed  PubMed Central  Google Scholar 

  58. Margot J, Bennati-Granier C, Maillard J et al (2013) Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Express 3:1–14

    Article  Google Scholar 

  59. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  60. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  61. Antecka A, Blatkiewicz M, Boruta T et al (2019) Comparison of downstream processing methods in purification of highly active laccase. Bioprocess Biosyst Eng 42:1635–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheldon RA (2018) Enzymatic conversion of first- and second- generation sugars. In: Vaz S Jr (ed) Biomass and green chemistry. Springer, Cham

    Google Scholar 

  63. Madadlou A, O’Sullivan S, Sheehan D (2011) Fast protein liquid chromatography. In: Walls D, Loughran S (eds) Protein chromatography. Methods in molecular biology (methods and protocols). Humana Press Inc., New York

    Google Scholar 

  64. Yang J, Xu X, Yang X et al (2016) Cross-linked enzyme aggregates of Cerrena laccase: preparation, enhanced NaCl tolerance and decolorization of Remazol Brilliant Blue Reactive. J Taiwan Inst Chem Eng 65:1–7

    Article  CAS  Google Scholar 

  65. Iqbal M, Tao Y, Xie S et al (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 18:1–18

    Article  Google Scholar 

  66. Grilo AL, Aires-Barros MR, Azevedo AM (2016) Partitioning in aqueous two-phase systems: fundamentals, applications and trends. Sep Purif Rev 45:68–80

    Article  Google Scholar 

  67. Silvério SC, Moreira S, Milagres AMF et al (2013) Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study. Bioprocess Biosyst Eng 36:365–373

    Article  PubMed  Google Scholar 

  68. Prinz A, Zeiner T, Vössing T et al (2012) Experimental investigation of laccase purification using aqueous two-phase extraction. Chem Eng Trans 27:349–354

    Google Scholar 

  69. Blatkiewicz M, Antecka A, Boruta T et al (2018) Partitioning of laccases derived from Cerrena unicolor and Pleurotus sapidus in polyethylene glycol – phosphate aqueous two–phase systems. Process Biochem 67:165–174

    Article  CAS  Google Scholar 

  70. Burghoff B (2012) Foam fractionation applications. J Biotechnol 161:126–137

    Article  CAS  PubMed  Google Scholar 

  71. Azimi M, Nafissi-Varcheh N, Mogharabi M et al (2016) Study of laccase activity and stability in the presence of ionic and non-ionic surfactants and the bioconversion of indole in laccase-TX-100 system. J Mol Catal B Enzym 126:69–75

    Article  CAS  Google Scholar 

  72. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  74. Cao L, Van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  CAS  PubMed  Google Scholar 

  75. Sheldon RA (2011) Cross-linked enzyme aggregates as industrial biocatalysts. Org Process Res Dev 15:213–223

    Article  CAS  Google Scholar 

  76. Engl W, Tachibana M, Panizza P et al (2007) Millifluidic as a versatile reactor to tune size and aspect ratio of large polymerized objects. Int J Multiph Flow 33:897–903

    Article  CAS  Google Scholar 

  77. Nguyen LT, Yang KL (2014) Uniform cross-linked cellulase aggregates prepared in millifluidic reactors. J Colloid Interface Sci 428:146–151

    Article  CAS  Google Scholar 

  78. Nguyen LT, Neo KRS, Yang KL (2015) Continuous hydrolysis of carboxymethyl cellulose with cellulase aggregates trapped inside membranes. Enzym Microb Technol 78:34–39

    Article  Google Scholar 

  79. Nguyen LT, Lau YS, Yang KL (2016) Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Colloids Surf B: Biointerfaces 145:862–869

    Article  CAS  PubMed  Google Scholar 

  80. Nguyen LT, Seow N, Yang KL (2017) Hollow cross-linked enzyme aggregates (h-CLEA) of laccase with high uniformity and activity. Colloids Surf B: Biointerfaces 151:88–94

    Article  CAS  PubMed  Google Scholar 

  81. Stressler T, Ewert J, Eisele T et al (2015) Cross-linked enzyme aggregates (CLEAs) of PepX and PepN - production, partial characterization and application of combi-CLEAs for milk protein hydrolysis. Biocatal Agric Biotechnol 4:752–760

    Article  Google Scholar 

  82. Sutarlie L, Yang KL (2013) Hybrid cellulase aggregate with a silica core for hydrolysis of cellulose and biomass. J Colloid Interface Sci 411:76–81

    Article  CAS  PubMed  Google Scholar 

  83. Rogalski J, Janusz G (2010) Purification of extracellular laccase from Cerrena unicolor. Prep Biochem Biotechnol 40:242–255

    Article  CAS  PubMed  Google Scholar 

  84. Cuatrecasas P, Anfinsen CB (1971) Affinity chromatography. Methods Enzymol 22:345–378

    Article  Google Scholar 

  85. Rezaei S, Shahverdi AR, Faramarzi MA (2017) Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol 230:67–75

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen TPB, Lee JW, Shim WG et al (2008) Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA. Microporous Mesoporous Mater 110:560–569

    Article  CAS  Google Scholar 

  87. Luechinger M, Pirngruber GD, Lindlar B et al (2005) The effect of the hydrophobicity of aromatic swelling agents on pore size and shape of mesoporous silicas. Microporous Mesoporous Mater 79:41–52

    Article  CAS  Google Scholar 

  88. Liang Y, Anwander R (2004) Synthesis of pore-enlarged mesoporous organosilicas under basic conditions. Microporous Mesoporous Mater 72:153–165

    Article  CAS  Google Scholar 

  89. Jana SK, Nishida R, Shindo K et al (2004) Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous Mesoporous Mater 68:133–142

    Article  CAS  Google Scholar 

  90. Sayari A, Kruk M, Jaroniec M et al (1998) New approaches to pore size engineering of mesoporous silicates. Adv Mater 10:1376–1379

    Article  CAS  Google Scholar 

  91. Blin JL, Su BL (2002) Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders. Langmuir 18:5303–5308

    Article  CAS  Google Scholar 

  92. Yan J, Chen D, Yang E et al (2014) Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization. Int Biodeterior Biodegrad 93:186–194

    Article  CAS  Google Scholar 

  93. Si J, Peng F, Cui B (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour Technol 128:49–57

    Article  CAS  PubMed  Google Scholar 

  94. Ahmed PM (2016) Biorremediación de vinazas de destilerías de alcohol, por microorganismos autóctonos aislados de ambientes contaminados. Doctoral thesis, Universidad Nacional de Tucumán

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmed, P.M., Pajot, H.F., Fernández, P.M. (2022). Production of Laccases from Agricultural Wastes: Strain Isolation and Selection, Enzymatic Profiling, and Lab-Scale Production. In: Udayanga, D., Bhatt, P., Manamgoda, D., Saez, J.M. (eds) Mycoremediation Protocols. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2006-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2006-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2005-2

  • Online ISBN: 978-1-0716-2006-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics