Skip to main content

In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy

  • Protocol
  • First Online:
Microtubules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

The dynamic architecture of the microtubule cytoskeleton is crucial for cell division, motility and morphogenesis. The dynamic properties of microtubules—growth, shrinkage, nucleation, and severing—are regulated by an arsenal of microtubule-associated proteins (MAPs). The activities of many of these MAPs have been reconstituted in vitro using microscope assays. As an alternative to fluorescence microscopy, interference-reflection microscopy (IRM) has been introduced as an easy-to-use, wide-field imaging technique that allows label-free visualization of microtubules with high contrast and speed. IRM circumvents several problems associated with fluorescence microscopy including the high concentrations of tubulin required for fluorescent labeling, the potential perturbation of function caused by the fluorophores, and the risks of photodamage. IRM can be implemented on a standard epifluorescence microscope at low cost and can be combined with fluorescence techniques like total-internal-reflection-fluorescence (TIRF) microscopy. Here we describe the experimental procedure to image microtubule dynamics and severing using IRM , providing practical tips and guidelines to resolve possible experimental hurdles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758. https://doi.org/10.1038/nature01600

    Article  Google Scholar 

  2. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726. https://doi.org/10.1038/nrm4084

    Article  Google Scholar 

  3. Kuo Y-W, Howard J (2020) Cutting, amplifying, and aligning microtubules with severing enzymes. Trends Cell Biol 31:50–61. https://doi.org/10.1016/j.tcb.2020.10.004

    Article  Google Scholar 

  4. Roostalu J, Surrey T (2017) Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 18:702–710. https://doi.org/10.1038/nrm.2017.75

    Article  Google Scholar 

  5. Brouhard GJ, Rice LM (2018) Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol 19:451–463. https://doi.org/10.1038/s41580-018-0009-y

    Article  Google Scholar 

  6. Goodson HV, Jonasson EM (2018) Microtubules and microtubule-associated proteins. Cold Spring Harbor Perspect Biol 10:a022608. https://doi.org/10.1101/cshperspect.a022608

    Article  Google Scholar 

  7. Brouhard GJ, Stear JH, Noetzel TL et al (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88. https://doi.org/10.1016/j.cell.2007.11.043

    Article  Google Scholar 

  8. Helenius J, Brouhard G, Kalaidzidis Y et al (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441:115–119. https://doi.org/10.1038/nature04736

    Article  Google Scholar 

  9. Varga V, Helenius J, Tanaka K et al (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8:957–962. https://doi.org/10.1038/ncb1462

    Article  Google Scholar 

  10. Gardner MK, Zanic M, Gell C et al (2011) Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147:1092–1103. https://doi.org/10.1016/j.cell.2011.10.037

    Article  Google Scholar 

  11. Bieling P, Laan L, Schek H et al (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105. https://doi.org/10.1038/nature06386

    Article  Google Scholar 

  12. Vale RD, Funatsu T, Pierce DW et al (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453. https://doi.org/10.1038/380451a0

    Article  Google Scholar 

  13. Fink G, Hajdo L, Skowronek KJ et al (2009) The mitotic kinesin-14 Ncd drives directional microtubule–microtubule sliding. Nat Cell Biol 11:717–723. https://doi.org/10.1038/ncb1877

    Article  Google Scholar 

  14. Dixit R, Ross JL, Goldman YE, Holzbaur ELF (2008) Differential regulation of dynein and kinesin motor proteins by Tau. Science 319:1086–1089. https://doi.org/10.1126/science.1152993

    Article  Google Scholar 

  15. Korten T, Nitzsche B, Gell C et al (2011) Single molecule analysis, methods and protocols. Meth Mol Biol 783:121–137. https://doi.org/10.1007/978-1-61779-282-3_7

    Article  Google Scholar 

  16. Saper G, Hess H (2020) Kinesin-propelled label-free microtubules imaged with interference reflection microscopy. New J Phys 22:095002. https://doi.org/10.1088/1367-2630/abb47b

    Article  Google Scholar 

  17. Howard J, Hyman AA (1993) Chapter 7 preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Meth Cell Biol 39:105–113. https://doi.org/10.1016/s0091-679x(08)60164-8

    Article  Google Scholar 

  18. Vigers GP, Coue M, McIntosh JR (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107:1011–1024. https://doi.org/10.1083/jcb.107.3.1011

    Article  Google Scholar 

  19. Aumeier C, Schaedel L, Gaillard J et al (2016) Self-repair promotes microtubule rescue. Nat Cell Biol 18:1054–1064. https://doi.org/10.1038/ncb3406

    Article  Google Scholar 

  20. Ti S-C, Pamula MC, Howes SC et al (2016) Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus- and minus-ends. Dev Cell 37:72–84. https://doi.org/10.1016/j.devcel.2016.03.003

    Article  Google Scholar 

  21. Johnson V, Ayaz P, Huddleston P, Rice LM (2011) Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50:8636–8644. https://doi.org/10.1021/bi2005174

    Article  Google Scholar 

  22. Orbach R, Howard J (2019) The dynamic and structural properties of axonemal tubulins support the high length stability of cilia. Nat Commun 10:1838. https://doi.org/10.1038/s41467-019-09779-6

    Article  Google Scholar 

  23. Ayukawa R, Iwata S, Imai H et al (2020) GTP-dependent formation of straight oligomers leads to nucleation of microtubules. Biorxiv. 2020.03.05.979989. https://doi.org/10.1101/2020.03.05.979989

  24. Sackett DL, Werbovetz KA, Morrissette NS (2010) Isolating tubulin from nonneural sources. Meth Cell Biol 95:17–32. https://doi.org/10.1016/s0091-679x(10)95002-4

    Article  Google Scholar 

  25. Widlund PO, Podolski M, Reber S et al (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401. https://doi.org/10.1091/mbc.e12-06-0444

    Article  Google Scholar 

  26. Hotta T, Fujita S, Uchimura S et al (2016) Affinity purification and characterization of functional tubulin from cell suspension cultures of arabidopsis and tobacco. Plant Physiol 170:1189–1205. https://doi.org/10.1104/pp.15.01173

    Article  Google Scholar 

  27. Vemu A, Atherton J, Spector JO et al (2016) Structure and dynamics of single-isoform recombinant neuronal human tubulin. J Biol Chem 291:12907–12915. https://doi.org/10.1074/jbc.c116.731133

    Article  Google Scholar 

  28. Souphron J, Bodakuntla S, Jijumon AS et al (2019) Purification of tubulin with controlled post-translational modifications by polymerization–depolymerization cycles. Nat Protoc 14:1634–1660. https://doi.org/10.1038/s41596-019-0153-7

    Article  Google Scholar 

  29. Hirst WG, Biswas A, Mahalingan KK, Reber S (2020) Differences in Intrinsic tubulin dynamic properties contribute to spindle length control in xenopus species. Curr Biol 30:2184–2190.e5. https://doi.org/10.1016/j.cub.2020.03.067

    Article  Google Scholar 

  30. Hotani H, Horio T (1988) Dynamics of microtubules visualized by darkfield microscopy: treadmilling and dynamic instability. Cell Motil Cytoskel 10:229–236. https://doi.org/10.1002/cm.970100127

    Article  Google Scholar 

  31. Walker RA, O’Brien ET, Pryer NK et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448. https://doi.org/10.1083/jcb.107.4.1437

    Article  Google Scholar 

  32. Bormuth V, Howard J, Schäffer E (2007) LED illumination for video-enhanced DIC imaging of single microtubules. J Microsc 226:1–5. https://doi.org/10.1111/j.1365-2818.2007.01756.x

    Article  MathSciNet  Google Scholar 

  33. Mahamdeh M, Simmert S, Luchniak A et al (2018) Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J Microsc 1991:95. https://doi.org/10.1111/jmi.12744

    Article  Google Scholar 

  34. Simmert S, Abdosamadi MK, Hermsdorf G, Schäffer E (2018) LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging. Opt Express 26:14499. https://doi.org/10.1364/oe.26.014499

    Article  Google Scholar 

  35. Mahamdeh M, Howard J (2019) Implementation of interference reflection microscopy for label-free, high-speed imaging of microtubules. J Vis Exp:e59520. https://doi.org/10.3791/59520

  36. Kuo Y-W, Trottier O, Mahamdeh M, Howard J (2019) Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules. Proc Natl Acad Sci U S A 116:5533–5541. https://doi.org/10.1073/pnas.1818824116

    Article  Google Scholar 

  37. Zhernov I, Diez S, Braun M, Lansky Z (2020) Intrinsically disordered domain of kinesin-3 Kif14 enables unique functional diversity. Curr Biol 30:3342–3351.e5. https://doi.org/10.1016/j.cub.2020.06.039

    Article  Google Scholar 

  38. Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Meth Cell Biol 95:221–245. https://doi.org/10.1016/s0091-679x(10)95013-9

    Article  Google Scholar 

  39. Caplow M, Ruhlen RL, Shanks J (1994) The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice [published erratum appears in J Cell Biol 1995 Apr;129(2):549]. J Cell Biol 127:779–788. https://doi.org/10.1083/jcb.127.3.779

  40. Hyman A, Drechsel D, Kellogg D et al (1991) Preparation of modified tubulins. Meth Enzymol 196:478–485

    Article  Google Scholar 

  41. Kuo Y, Trottier O, Howard J (2019) Predicted effects of severing enzymes on the length distribution and total mass of microtubules. Biophys J 117:2066–2078. https://doi.org/10.1016/j.bpj.2019.10.027

    Article  Google Scholar 

  42. Zanic M (2016) The mitotic spindle, methods and protocols. Met Mol Biol 1413:47–61. https://doi.org/10.1007/978-1-4939-3542-0_4

    Article  Google Scholar 

  43. Ziółkowska NE, Roll-Mecak A (2013) In vitro microtubule severing assays. Met Mol Biol 1046:323–334. https://doi.org/10.1007/978-1-62703-538-5_19

    Article  Google Scholar 

  44. Davis LJ, Odde DJ, Block SM, Gross SP (2002) The importance of lattice defects in katanin-mediated microtubule severing in vitro. Biophys J 82:2916–2927. https://doi.org/10.1016/s0006-3495(02)75632-4

    Article  Google Scholar 

  45. Eckert T, Link S, Le DT-V et al (2012) Subunit interactions and cooperativity in the microtubule-severing AAA ATPase spastin. J Biol Chem 287:26278–26290. https://doi.org/10.1074/jbc.m111.291898

    Article  Google Scholar 

  46. Bailey ME, Sackett DL, Ross JL (2015) Katanin severing and binding microtubules are inhibited by tubulin carboxy tails. Biophys J 109:2546–2561. https://doi.org/10.1016/j.bpj.2015.11.011

    Article  Google Scholar 

  47. Wieczorek M, Chaaban S, Brouhard GJ (2013) Macromolecular crowding pushes catalyzed microtubule growth to near the theoretical limit. Cell Mol Bioeng 6:383–392. https://doi.org/10.1007/s12195-013-0292-9

    Article  Google Scholar 

  48. Katsuki M, Muto E, Cross RA (2011) Microtubule dynamics, methods and protocols. Meth Mol Biol 777:117–126. https://doi.org/10.1007/978-1-61779-252-6_9

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mohammed Mahamdeh and Dr. Anna Luchniak for comments and discussions on the manuscript. This work was supported by NIH grants R01 GM139337, DP1 MH110065, and R01 NS118884 (to J.H.) and a fellowship from the Ministry of Education in Taiwan (to Y-W.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuo, YW., Howard, J. (2022). In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics