Skip to main content

Identification of RNA–RBP Interactions in Subcellular Compartments by CLIP-Seq

  • Protocol
  • First Online:
The Integrated Stress Response

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2428))

Abstract

Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) allows the identification of RNA targets bound by a specific RNA-binding protein (RBP) in in vivo and ex vivo experimental models with high specificity. Due to the little RNA yield obtained after cross-linking, immunoprecipitation, polyacrylamide gel electrophoresis, membrane transfer, and RNA extraction, CLIP-seq is usually performed from relatively large amounts of starting material, like cell lysates or tissue homogenates. However, RBP binding of its specific RNA targets depends on its subcellular localization, and a different set of RNAs may be bound by the same RBP within distinct subcellular sites. To uncover these RNA subsets, preparation of CLIP-seq libraries from specific subcellular compartments and comparison to CLIP-seq datasets from total lysates is necessary, yet there are currently no available protocols for this. Here we describe the adaptation of CLIP-seq to identify the specific RNA targets of an RBP (FUS) at a small subcompartment, that is, neuronal synapses, including subcompartment isolation, RBP–RNA complex enrichment, and upscaling steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies nova-regulated RNA networks in the brain. Science 302:1212–1215. https://doi.org/10.1126/science.1090095

    Article  CAS  PubMed  Google Scholar 

  2. König J, Zarnack K, Luscombe NM, Ule J (2012) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13(2):77–83. https://doi.org/10.1038/nrg3141

    Article  CAS  PubMed  Google Scholar 

  3. Murigneux V, Saulière JÔ, Roest Crollius H, Le Hir H (2013) Transcriptome-wide identification of RNA binding sites by CLIP-seq. Methods 63(1):32–40. https://doi.org/10.1016/j.ymeth.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  4. Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, Shibata A, Urano F, Sobue G, Ohno K (2012) Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep 2:1–8. https://doi.org/10.1038/srep00529

    Article  CAS  Google Scholar 

  5. Lagier-Tourenne C, Polymenidou M, Hutt KR et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497. https://doi.org/10.1038/nn.3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masuda A, Takeda JI, Okuno T, Okamoto T, Ohkawara B, Ito M, Ishigaki S, Sobue G, Ohno K (2015) Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev 29:1045–1057. https://doi.org/10.1101/gad.255737.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rogelj B, Easton LE, Bogu GK et al (2012) Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep 2:1–10. https://doi.org/10.1038/srep00603

    Article  CAS  Google Scholar 

  8. Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG (2013) ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet 9:e1003895

    Article  Google Scholar 

  9. Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, Hafner M, Borkhardt A, Sander C, Tuschl T (2011) RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol 18(12):1428–1431. https://doi.org/10.1038/nsmb.2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schoen M, Reichel JM, Demestre M et al (2016) Super-resolution microscopy reveals presynaptic localization of the ALS/FTD related protein FUS in hippocampal neurons. Front Cell Neurosci 9:1–16. https://doi.org/10.3389/fncel.2015.00496

    Article  CAS  Google Scholar 

  11. Deshpande D, Higelin J, Schoen M, Vomhof T, Boeckers TM, Demestre M, Michaelis J (2019) Synaptic FUS localization during motoneuron development and its accumulation in human ALS synapses. Front Cell Neurosci 13:1–17. https://doi.org/10.3389/fncel.2019.00256

    Article  CAS  Google Scholar 

  12. Sahadevan S, Hembach KM, Tantardini E et al (2020) Synaptic accumulation of FUS triggers age-dependent misregulation of inhibitory synapses in ALS-FUS mice. bioRxiv 2020.06.10.136010. https://doi.org/10.1101/2020.06.10.136010

  13. Laferriere F, Maniecka Z, Perez-Berlanga M et al (2019) TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat Neurosci 22:65–77. https://doi.org/10.1038/s41593-018-0294-y

    Article  CAS  PubMed  Google Scholar 

  14. Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27:4–25. https://doi.org/10.1111/sms.12702

    Article  CAS  PubMed  Google Scholar 

  15. Muddashetty RS, Kelić S, Gross C, Xu M, Bassell GJ (2007) Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27(20):5338–5348. https://doi.org/10.1523/JNEUROSCI.0937-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams C, Shai RM, Wu Y, Hsu YH, Sitzer T, Spann B, McCleary C, Mo Y, Miller CA (2009) Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer’s disease. PLoS One 4(3):e4936. https://doi.org/10.1371/journal.pone.0004936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki K, Bose P, Leong-Quong RYY, Fujita DJ, Riabowol K (2010) REAP: a two minute cell fractionation method. BMC Res Notes 3:294. https://doi.org/10.1186/1756-0500-3-294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanford JR, Coutinho P, Hackett JA, Wang X, Ranahan W, Caceres JF (2008) Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLoS One 3:1–10. https://doi.org/10.1371/journal.pone.0003369

    Article  CAS  Google Scholar 

  19. Kausch AP, Owen TPJ, Narayanswami S, Bruce BD (1999) Organelle isolation by magnetic immunoabsorption. BioTechniques 26:336–343. https://doi.org/10.2144/99262rr04

    Article  CAS  PubMed  Google Scholar 

  20. Tchikov V, Fritsch J, Kabelitz D, Schütze S (2010) Immunomagnetic isolation of subcellular compartments. In: Kabelitz D, Kaufmann SHE (eds) Immunology of Infection. Academic Press, New York, pp 21–33. https://doi.org/10.1016/S0580-9517(10)37002-4

    Chapter  Google Scholar 

  21. Jutzi D, Campagne S, Schmidt R et al (2020) Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nat Commun 11:6341. https://doi.org/10.1038/s41467-020-20191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from the animal facility of the University Hospital of Zurich (USZ) and the Short Read Sequencing group from the Genomics/Transcriptomics team at the Functional Genomics Center Zurich (FGCZ) from the University of Zurich (UZH). We thank Julien Weber for experimental support and the National Center of Competence in Research (NCCR), RNA & Disease funded by the Swiss National Science Foundation (SNF) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalini Polymenidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahadevan, S., Pérez-Berlanga, M., Polymenidou, M. (2022). Identification of RNA–RBP Interactions in Subcellular Compartments by CLIP-Seq. In: Matějů, D., Chao, J.A. (eds) The Integrated Stress Response. Methods in Molecular Biology, vol 2428. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1975-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1975-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1974-2

  • Online ISBN: 978-1-0716-1975-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics