Skip to main content

pH/Acetonitrile-Gradient Reversed-Phase Fractionation of Enriched Hyper-Citrullinated Library in Combination with LC–MS/MS Analysis for Confident Identification of Citrullinated Peptides

  • Protocol
  • First Online:
Clinical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2420))

Abstract

Citrullination, the Ca2+-driven enzymatic conversion of arginine residues to citrulline, is a posttranslational modification, implicated in several physiological and pathological processes. Several methods to detect citrullinated proteins have been developed, including color development reagent, fluorescence, phenylglyoxal, and antibody-based methods. These methods yet suffer from limitations in sensitivity, specificity, or citrullinated site determination. Mass spectrometry (MS)-based proteomic analysis has emerged as a promising method to resolve these problems. However, due to low abundance of citrullinated proteins and similar MS features to deamidation of asparagine and glutamine, confident identification of citrullinated proteome is challenging. Here, we present a systematic approach to identify a compendium of steps to enhance the number of detected citrullinated residue and implement diagnostic MS feature that allow the confidence of MS-based identifications. Our method is based on the concept of generation of hyper-citrullinated library with high-pH reversed-phase peptide fractionation that allows to enrich in low abundance citrullinated peptides and amplify the effect of charge loss upon citrullination. Application of our approach to complex global citrullino-proteome datasets demonstrates the confident assessment of citrullinated peptides, thereby enhancing the size and functional interpretation of citrullinated proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. György B, Tóth E, Tarcsa E et al (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38:1662–1677

    Article  Google Scholar 

  2. Slade DJ, Subramanian V, Fuhrmann J et al (2014) Chemical and biological methods to detect posttranslational modifications of arginine. Biopolymers 101:133–143

    Article  CAS  Google Scholar 

  3. van Venrooij WJ, Pruijn GJ (2000) Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res 2:249–251

    Article  Google Scholar 

  4. Fearon WR (1939) The carbamido diacetyl reaction: a test for citrulline. Biochem J 33:902–907

    Article  CAS  Google Scholar 

  5. Orgován G, Noszál B (2011) The complete microspeciation of arginine and citrulline. J Pharm Biomed Anal 54:965–971

    Article  Google Scholar 

  6. Chirivi RGS, van Rosmalen JWG, Jenniskens GJ et al (2013) Citrullination: a target for disease intervention in multiple sclerosis and other inflammatory diseases? J Clin Cell Immunol 4:146

    Article  Google Scholar 

  7. Tarcsa E, Marekov LN, Mei G et al (1996) Protein unfolding by Peptidylarginine deiminase: substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271:30709–30716

    Article  CAS  Google Scholar 

  8. Tilvawala R, Nguyen SH, Maurais AJ et al (2018) The rheumatoid arthritis-associated Citrullinome. Cell Chem Biol 25:691–704.e6

    Article  CAS  Google Scholar 

  9. Christophorou MA, Castelo-Branco G, Halley-Stott RP et al (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108

    Article  CAS  Google Scholar 

  10. Amin B, Voelter W (2017) Human deiminases: isoforms, Substrate specificities, kinetics, and detection. Prog Chem Org Nat Prod 106:203–240

    CAS  PubMed  Google Scholar 

  11. Fert-Bober J, Giles JT, Holewinski RJ et al (2015) Citrullination of myofilament proteins in heart failure. Cardiovasc Res 108:232–242

    Article  CAS  Google Scholar 

  12. Hill JA, Bell DA, Brintnell W et al (2008) Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J Exp Med 205:967–979

    Article  CAS  Google Scholar 

  13. Ludwig RJ, Vanhoorelbeke K, Leypoldt F et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603

    Article  Google Scholar 

  14. Bitoun S, Roques P, Larcher T et al (2017) Both systemic and intra-articular immunization with Citrullinated peptides are needed to induce arthritis in the macaque. Front Immunol 8:1816

    Article  Google Scholar 

  15. Hensen SMM, Pruijn GJM (2014) Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol Cell Proteomics 13:388–396

    Article  CAS  Google Scholar 

  16. Hao G, Wang D, Gu J et al (2009) Neutral loss of isocyanic acid in peptide CID spectra: a novel diagnostic marker for mass spectrometric identification of protein citrullination. J Am Soc Mass Spectrom 20:723–727

    Article  CAS  Google Scholar 

  17. Lee C-Y, Wang D, Wilhelm M et al (2018) Mining the human tissue proteome for protein Citrullination. Mol Cell Proteomics 17:1378–1391

    Article  CAS  Google Scholar 

  18. Raijmakers R, van Beers JJBC, El-Azzouny M et al (2012) Elevated levels of fibrinogen-derived endogenous citrullinated peptides in synovial fluid of rheumatoid arthritis patients. Arthritis Res Ther 14:R114

    Article  CAS  Google Scholar 

  19. Fert-Bober J, Venkatraman V, Hunter CL et al (2019) Mapping Citrullinated sites in multiple organs of mice using Hypercitrullinated library. J Proteome Res 18:2270–2278

    Article  CAS  Google Scholar 

  20. Escher C, Reiter L, MacLean B et al (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:1111–1121

    Article  CAS  Google Scholar 

  21. Wiśniewski JR (2016) Quantitative evaluation of filter aided sample preparation (FASP) and multienzyme digestion FASP protocols. Anal Chem 88:5438–5443

    Article  Google Scholar 

  22. Wiśniewski JR, Mann M (2012) Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 84:2631–2637

    Article  Google Scholar 

  23. Schilling B, Rardin MJ, MacLean BX et al (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214

    Article  CAS  Google Scholar 

  24. Pino LK, Searle BC, Bollinger JG et al (2020) The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 39:229–244

    Article  CAS  Google Scholar 

  25. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  Google Scholar 

  26. Keller A, Eng J, Zhang N et al (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:2005.0017

    Article  Google Scholar 

  27. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  28. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  Google Scholar 

  29. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13:22–24

    Article  CAS  Google Scholar 

  30. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  Google Scholar 

  31. Shteynberg D, Deutsch EW, Lam H et al (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10:M111.007690

    Article  Google Scholar 

  32. Collins BC, Gillet LC, Rosenberger G et al (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10:1246–1253

    Article  CAS  Google Scholar 

  33. Lam H, Deutsch EW, Eddes JS et al (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7:655–667

    Article  CAS  Google Scholar 

  34. Schubert OT, Gillet LC, Collins BC et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10:426–441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Polish National Agency for Academic Exchange (NAWA) and R01 HL111362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Fert-Bober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stachowicz, A., Sundararaman, N., Venkatraman, V., Van Eyk, J., Fert-Bober, J. (2022). pH/Acetonitrile-Gradient Reversed-Phase Fractionation of Enriched Hyper-Citrullinated Library in Combination with LC–MS/MS Analysis for Confident Identification of Citrullinated Peptides. In: Corrales, F.J., Paradela, A., Marcilla, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 2420. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1936-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1936-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1935-3

  • Online ISBN: 978-1-0716-1936-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics