Skip to main content

Exploring the Associations Between Clonal Hematopoiesis of Indeterminate Potential, Myeloid Malignancy, and Atherosclerosis

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Outgrowth of a mutated hematopoietic stem/progenitor clone and its descendants, also known as clonal hematopoiesis, has long been considered as either a potential forerunner to hematologic malignancy or as a clinically silent phase in leukemia that antedates symptomatic disease. That definition of clonal hematopoiesis has now been expanded to encompass patients who harbor specific genetic/epigenetic mutations that lead to clonal hematopoiesis of indeterminate potential (CHIP) and, with it, a relatively heightened risk for both myeloid malignancy and atherosclerosis during aging. In this review, we provide contemporary insights into the cellular and molecular basis for CHIP and explore the relationship of CHIP to myeloid malignancy and atherosclerosis. We also discuss emerging strategies to explore CHIP biology and clinical targeting of CHIP related malignancy and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Nieuwenhuijzen N, Spaan I, Raymakers R, Peperzak V (2018) From MGUS to multiple myeloma, a paradigm for clonal evolution of premalignant cells. Cancer Res 78:2449–2456. https://doi.org/10.1158/0008-5472.CAN-17-3115

    Article  CAS  PubMed  Google Scholar 

  2. Steensma DP (2019) The clinical challenge of idiopathic cytopenias of undetermined significance (ICUS) and clonal cytopenias of undetermined significance (CCUS). Curr Hematol Malig Rep 14:536–542. https://doi.org/10.1007/s11899-019-00547-3

    Article  PubMed  Google Scholar 

  3. Hong D, Gupta R, Ancliff P et al (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319:336–339. https://doi.org/10.1126/science.1150648

    Article  CAS  PubMed  Google Scholar 

  4. Shlush LI, Zandi S, Mitchell A et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328–333. https://doi.org/10.1038/nature13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holyoake TL, Vetrie D (2017) The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 129:1595–1606. https://doi.org/10.1182/blood-2016-09-696013

    Article  CAS  PubMed  Google Scholar 

  6. Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478. https://doi.org/10.1038/nm.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487. https://doi.org/10.1056/nejmoa1409405

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. https://doi.org/10.1056/nejmoa1408617

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121. https://doi.org/10.1056/nejmoa1701719

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zink F, Stacey SN, Norddahl GL et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752. https://doi.org/10.1182/blood-2017-02-769869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559:400–404. https://doi.org/10.1038/s41586-018-0317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1015–1023. https://doi.org/10.1038/s41591-018-0081-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. King KY, Huang Y, Nakada D, Goodell MA (2020) Environmental influences on clonal hematopoiesis. Exp Hematol 83:66–73. https://doi.org/10.1016/j.exphem.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Chen T, Ueda Y, Dodge JE et al (2003) Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23:5594–5605. https://doi.org/10.1128/mcb.23.16.5594-5605.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257. https://doi.org/10.1016/S0092-8674(00)81656-6

    Article  CAS  PubMed  Google Scholar 

  16. Sandoval JE, Huang YH, Muise A et al (2019) Mutations in the DNMT3A DNA methyltransferase in acute myeloid leukemia patients cause both loss and gain of function and differential regulation by protein partners. J Biol Chem 294:4898–4910. https://doi.org/10.1074/jbc.RA118.006795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khrabrova DA, Loiko AG, Tolkacheva AA et al (2020) Functional analysis of DNMT3A DNA methyltransferase mutations reported in patients with acute myeloid leukemia. Biomolecules 10:1–16. https://doi.org/10.3390/biom10010008

    Article  CAS  Google Scholar 

  18. Challen GA, Sun D, Jeong M et al (2012) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:23–31. https://doi.org/10.1038/ng.1009

    Article  CAS  Google Scholar 

  19. Jeong M, Park HJ, Celik H et al (2018) Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep 23:1–10. https://doi.org/10.1016/j.celrep.2018.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hormaechea-Agulla D, Matatall KA, Le DT et al (2021) Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28:1428–1442.e6. https://doi.org/10.1016/j.stem.2021.03.002

    Article  CAS  PubMed  Google Scholar 

  21. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Z, Cai X, Cai CL et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118:4509–4518. https://doi.org/10.1182/blood-2010-12-325241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abdel-Wahab O, Mullally A, Hedvat C et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147. https://doi.org/10.1182/blood-2009-03-210039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abegunde SO, Buckstein R, Wells RA, Rauh MJ (2018) An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp Hematol 59:60–65. https://doi.org/10.1016/j.exphem.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  25. Cai Z, Kotzin JJ, Ramdas B et al (2018) Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23:833–849.e5. https://doi.org/10.1016/j.stem.2018.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sano S, Oshima K, Wang Y et al (2018) Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol 71:875–886. https://doi.org/10.1016/j.jacc.2017.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meisel M, Hinterleitner R, Pacis A et al (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–584. https://doi.org/10.1038/s41586-018-0125-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdel-Wahab O, Adli M, LaFave LM et al (2012) ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22:180–193. https://doi.org/10.1016/j.ccr.2012.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fisher CL, Pineault N, Brookes C et al (2010) Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood 115:38–46. https://doi.org/10.1182/blood-2009-07-230698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdel-Wahab O, Gao J, Adli M et al (2013) Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med 210:2641–2659. https://doi.org/10.1084/jem.20131141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Li Z, He Y et al (2014) Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. Blood 123:541–553. https://doi.org/10.1182/blood-2013-05-500272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang H, Kurtenbach S, Guo Y et al (2018) Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 131:328–341. https://doi.org/10.1182/blood-2017-06-789669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schnittger S, Eder C, Jeromin S et al (2013) ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27:82–91. https://doi.org/10.1038/leu.2012.262

    Article  CAS  PubMed  Google Scholar 

  34. Dawoud AAZ, Tapper WJ, Cross NCP (2020) Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 34:2660–2672. https://doi.org/10.1038/s41375-020-0896-8

    Article  CAS  PubMed  Google Scholar 

  35. Morales-Mantilla DE, Huang X, Erice P et al (2020) Cigarette smoke exposure in mice using a whole-body inhalation system. J Vis Exp (164):e61793. https://doi.org/10.3791/61793

  36. Vainchenker W, Constantinescu SN (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32:2601–2613. https://doi.org/10.1038/onc.2012.347

    Article  CAS  PubMed  Google Scholar 

  37. Dutta S, Pregartner G, Rücker FG et al (2020) Functional classification of tp53 mutations in acute myeloid leukemia. Cancers 12:1–16. https://doi.org/10.3390/cancers12030637

    Article  CAS  Google Scholar 

  38. Kirschner K, Chandra T, Kiselev V et al (2017) Proliferation drives aging-related functional decline in a subpopulation of the hematopoietic stem cell compartment. Cell Rep 19:1503–1511. https://doi.org/10.1016/j.celrep.2017.04.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marshall A, Kasturiarachchi J, Datta P et al (2020) Mir142 loss unlocks IDH2R140-dependent leukemogenesis through antagonistic regulation of HOX genes. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-76218-8

    Article  CAS  Google Scholar 

  40. Kuendgen A, Nomdedeu M, Tuechler H et al (2021) Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification—an approach to classification of patients with t-MDS. Leukemia 35:835–849. https://doi.org/10.1038/s41375-020-0917-7

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi K, Wang F, Kantarjian H et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111. https://doi.org/10.1016/S1470-2045(16)30626-X

    Article  PubMed  Google Scholar 

  42. Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226. https://doi.org/10.1038/s41588-020-00710-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bernard E, Nannya Y, Hasserjian RP et al (2020) Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med 26:1549–1556. https://doi.org/10.1038/s41591-020-1008-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Gao R, Yao C et al (2018) Genotoxic stresses promote clonal expansion of hematopoietic stem cells expressing mutant p53. Leukemia 32:850–854. https://doi.org/10.1038/leu.2017.325

    Article  CAS  PubMed  Google Scholar 

  45. Sallman DA, McLemore AF, Aldrich AL et al (2020) TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood 136:2812–2823. https://doi.org/10.1182/blood.2020006158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleiblova P, Shaltiel IA, Benada J et al (2013) Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J Cell Biol 201:511–521. https://doi.org/10.1083/jcb.201210031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kahn JD, Miller PG, Silver AJ et al (2018) PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132:1095–1105. https://doi.org/10.1182/blood-2018-05-850339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713.e6. https://doi.org/10.1016/j.stem.2018.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gibson CJ, Lindsley RC (2020) Stem cell donors should not be screened for clonal hematopoiesis. Blood Adv 4:789–792. https://doi.org/10.1182/bloodadvances.2019000395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DeZern AE, Gondek LP (2020) Stem cell donors should be screened for CHIP. Blood Adv 4:784–788. https://doi.org/10.1182/bloodadvances.2019000394

    Article  PubMed  PubMed Central  Google Scholar 

  51. Frick M, Chan W, Arends CM et al (2019) Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation. J Clin Oncol 37:375–385. https://doi.org/10.1200/JCO.2018.79.2184

    Article  CAS  PubMed  Google Scholar 

  52. Dorsheimer L, Assmus B, Rasper T et al (2019) Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4:25–33. https://doi.org/10.1001/jamacardio.2018.3965

    Article  PubMed  Google Scholar 

  53. Fuster JJ, MacLauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847. https://doi.org/10.1126/science.aag1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sano S, Oshima K, Wang Y et al (2018) CRISPR-mediated gene editing to assess the roles of TET2 and DNMT3A in clonal hematopoiesis and cardiovascular disease. Circ Res 123:335–341. https://doi.org/10.1161/CIRCRESAHA.118.313225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sano S, Wang Y, Yura Y et al (2019) JAK2V617F-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic Transl Sci 4:684–697. https://doi.org/10.1016/j.jacbts.2019.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fidler TP, Xue C, Yalcinkaya M et al (2021) The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592:296–301. https://doi.org/10.1038/s41586-021-03341-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abplanalp WT, Cremer S, John D et al (2021) Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ Res 128:216–228. https://doi.org/10.1161/CIRCRESAHA.120.317104

    Article  CAS  PubMed  Google Scholar 

  58. Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9. https://doi.org/10.1016/S0952-7915(97)80152-5

    Article  CAS  PubMed  Google Scholar 

  59. Murphy AJ, Akhtari M, Tolani S et al (2011) ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 121:4138–4149. https://doi.org/10.1172/JCI57559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feng Y, Schouteden S, Geenens R et al (2012) Hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice. PLoS One 7:1–12. https://doi.org/10.1371/journal.pone.0047286

    Article  CAS  Google Scholar 

  61. Heyde A, Rohde D, McAlpine CS et al (2021) Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184:1348–1361.e22. https://doi.org/10.1016/j.cell.2021.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ventura Ferreira MS, Crysandt M, Ziegler P et al (2017) Evidence for a pre-existing telomere deficit in non-clonal hematopoietic stem cells in patients with acute myeloid leukemia. Ann Hematol 96:1457–1461. https://doi.org/10.1007/s00277-017-3049-z

    Article  CAS  PubMed  Google Scholar 

  63. Tothova Z, Krill-Burger JM, Popova KD et al (2017) Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell 21:547–555.e8. https://doi.org/10.1016/j.stem.2017.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Loberg MA, Bell RK, Goodwin LO et al (2019) Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia 33:1635–1649. https://doi.org/10.1038/s41375-018-0368-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Sano S, Yura Y et al (2020) Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5:1–16. https://doi.org/10.1172/jci.insight.135204

    Article  CAS  Google Scholar 

  66. Spyrou N, Papapetrou EP (2021) Studying leukemia stem cell properties and vulnerabilities with human iPSCs. Stem Cell Res 50:1–9. https://doi.org/10.1016/j.scr.2020.102117

    Article  CAS  Google Scholar 

  67. Wang T, Pine AR, Kotini AG et al (2021) Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell 28:1–16. https://doi.org/10.1016/j.stem.2021.01.011

    Article  CAS  Google Scholar 

  68. Russler-Germain DA, Spencer DH, Young MA et al (2014) The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25:442–454. https://doi.org/10.1016/j.ccr.2014.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boettcher S, Miller PG, Sharma R et al (2019) A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365:599–604. https://doi.org/10.1126/science.aax3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dudgeon C, Shreeram S, Tanoue K et al (2013) Genetic variants and mutations of PPM1D control the response to DNA damage. Cell Cycle 12:2656–2664. https://doi.org/10.4161/cc.25694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Inoue D, Matsumoto M, Nagase R et al (2016) Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol 44:172–176.e1. https://doi.org/10.1016/j.exphem.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  72. Miles LA, Bowman RL, Merlinsky TR et al (2020) Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587:477–482. https://doi.org/10.1038/s41586-020-2864-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/nejmoa1707914

    Article  CAS  PubMed  Google Scholar 

  74. Guan Y, Tiwari AD, Phillips JG et al (2021) A therapeutic strategy for preferential targeting of TET2 -mutant and TET dioxygenase–deficient cells in myeloid neoplasms. Blood Cancer Discov 2:146–161. https://doi.org/10.1158/2643-3230.bcd-20-0173

    Article  PubMed  Google Scholar 

  75. Cimmino L, Dolgalev I, Wang Y et al (2017) Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170:1079–1095.e20. https://doi.org/10.1016/j.cell.2017.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Agathocleous M, Meacham CE, Burgess RJ et al (2017) Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549:476–481. https://doi.org/10.1038/nature23876

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fuster JJ, Zuriaga MA, Zorita V et al (2020) TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 33:1–9.e5. https://doi.org/10.1016/j.celrep.2020.108326

    Article  CAS  Google Scholar 

  78. García-Nieto PE, Morrison AJ, Fraser HB (2019) The somatic mutation landscape of the human body. Genome Biol 20(298):1–20. https://doi.org/10.1186/s13059-019-1919-5

    Article  Google Scholar 

  79. Franco I, Helgadottir HT, Moggio A et al (2019) Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biol 20(285):1–22. https://doi.org/10.1186/s13059-019-1892-z

    Article  CAS  Google Scholar 

  80. Murai K, Skrupskelyte G, Piedrafita G et al (2018) Epidermal tissue adapts to restrain progenitors carrying clonal p53 mutations. Cell Stem Cell 23:687–699.e8. https://doi.org/10.1016/j.stem.2018.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fernandez-Antoran D, Piedrafita G, Murai K et al (2019) Outcompeting p53-mutant cells in the normal esophagus by redox manipulation. Cell Stem Cell 25:329–341.e6. https://doi.org/10.1016/j.stem.2019.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Rodrigues laboratory is supported by the Leukemia Cancer Society, Leukaemia Research Appeal for Wales, and the Saudi Arabian Cultural Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil P. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menendez-Gonzalez, J.B., Rodrigues, N.P. (2022). Exploring the Associations Between Clonal Hematopoiesis of Indeterminate Potential, Myeloid Malignancy, and Atherosclerosis. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics