Skip to main content

PET Imaging of Estrogen Receptors Using 18F-Based Radioligands

  • Protocol
  • First Online:
Estrogen Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2418))

Abstract

In vivo molecular imaging of estrogen receptor alpha (ER) can be performed via positron emission tomography (PET) using ER-specific radioligands, such as 16α-[18F]fluoro-17β-estradiol (18F-FES). 18F-FES is a radiopharmaceutical recently approved by the United States Food and Drug Administration for use with PET imaging to detect ER+ lesions in patients with recurrent or metastatic breast cancer as an adjunct to biopsy. 18F-FES PET imaging has been used in clinical studies and preclinical research to assess whole-body ER protein expression and ligand binding function across multiple metastatic sites, to demonstrate inter-tumoral and temporal heterogeneity of ER expression, to quantify the pharmacodynamic effects of ER antagonist treatment, and to predict endocrine therapy response. 18F-FES PET has also been studied for imaging ER in endometrial and ovarian cancer. This chapter details the experimental protocol for 18F-FES PET imaging of ER in preclinical tumor xenograft models. Consistent adherence to key methodologic details will facilitate obtaining meaningful and reproducible 18F-FES PET preclinical imaging results, which could yield additional insight for clinical trials regarding imaging biomarkers and oncologic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katzenellenbogen JA (2020) The quest for improving the management of breast cancer by functional imaging: the discovery and development of 16alpha-[(18)F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl Med Biol 92:24. https://doi.org/10.1016/j.nucmedbio.2020.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allott L, Smith G, Aboagye EO, Carroll L (2015) PET imaging of steroid hormone receptor expression. Mol Imaging 14(10):534–550. https://doi.org/10.2310/7290.2015.00026

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira MC, Neto C, Ribeiro Morais G, Thiemann T (2013) Steroid receptor ligands for breast cancer targeting: an insight into their potential role as PET imaging agents. Curr Med Chem 20(2):222–245. https://doi.org/10.2174/092986713804806658

    Article  CAS  PubMed  Google Scholar 

  4. Paquette M, Lavallee E, Phoenix S, Ouellet R, Senta H, van Lier JE, Guerin B, Lecomte R, Turcotte EE (2018) Improved estrogen receptor assessment by PET using the novel radiotracer (18)F-4FMFES in estrogen receptor-positive breast cancer patients: an ongoing phase II clinical trial. J Nucl Med 59(2):197–203. https://doi.org/10.2967/jnumed.117.194654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar M, Salem K, Tevaarwerk AJ, Strigel RM, Fowler AM (2020) Recent advances in imaging steroid hormone receptors in breast cancer. J Nucl Med 61(2):172–176. https://doi.org/10.2967/jnumed.119.228858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Linden HM, Peterson LM, Fowler AM (2018) Clinical potential of estrogen and progesterone receptor imaging. PET Clin 13(3):415–422. https://doi.org/10.1016/j.cpet.2018.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ (1984) Preparation of four fluorine- 18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25(11):1212–1221

    CAS  PubMed  Google Scholar 

  8. Seimbille Y, Rousseau J, Bénard F, Morin C, Ali H, Avvakumov G, Hammond GL, van Lier JE (2002) 18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals. Steroids 67(9):765–775. https://doi.org/10.1016/s0039-128x(02)00025-9

    Article  CAS  PubMed  Google Scholar 

  9. Yoo J, Dence CS, Sharp TL, Katzenellenbogen JA, Welch MJ (2005) Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha-[18F]fluoro-17beta-estradiol. J Med Chem 48(20):6366–6378

    Article  CAS  PubMed  Google Scholar 

  10. Salem K, Kumar M, Kloepping KC, Michel CJ, Yan Y, Fowler AM (2018) Determination of binding affinity of molecular imaging agents for steroid hormone receptors in breast cancer. Am J Nucl Med Mol Imaging 8(2):119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moon BS, Carlson KE, Katzenellenbogen JA, Choi TH, Chi DY, Kim JY, Cheon GJ, Koh HY, Lee KC, An G (2009) Synthesis and evaluation of aryl-substituted diarylpropionitriles, selective ligands for estrogen receptor beta, as positron-emission tomographic imaging agents. Bioorg Med Chem 17(9):3479–3488. https://doi.org/10.1016/j.bmc.2009.02.064

    Article  CAS  PubMed  Google Scholar 

  12. Lee JH, Peters O, Lehmann L, Dence CS, Sharp TL, Carlson KE, Zhou D, Jeyakumar M, Welch MJ, Katzenellenbogen JA (2012) Synthesis and biological evaluation of two agents for imaging estrogen receptor β by positron emission tomography: challenges in PET imaging of a low abundance target. Nucl Med Biol 39(8):1105–1116. https://doi.org/10.1016/j.nucmedbio.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  13. Antunes IF, van Waarde A, Dierckx RA, de Vries EG, Hospers GA, de Vries EF (2017) Synthesis and evaluation of the estrogen receptor β-selective radioligand 2-(18)F-fluoro-6-(6-hydroxynaphthalen-2-yl)pyridin-3-ol: comparison with 16α-(18)F-fluoro-17β-estradiol. J Nucl Med 58(4):554–559. https://doi.org/10.2967/jnumed.116.180158

    Article  CAS  PubMed  Google Scholar 

  14. Kurland BF, Wiggins JR, Coche A, Fontan C, Bouvet Y, Webner P, Divgi C, Linden HM (2020) Whole-body characterization of estrogen receptor status in metastatic breast cancer with 16alpha-18F-fluoro-17beta-estradiol positron emission tomography: meta-analysis and recommendations for integration into clinical applications. Oncologist 25(10):835–844. https://doi.org/10.1634/theoncologist.2019-0967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169(1):45–48

    Article  CAS  PubMed  Google Scholar 

  16. McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, Mintun MA, Katzenellenbogen JA, Welch MJ (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32(8):1526–1531

    CAS  PubMed  Google Scholar 

  17. Dehdashti F, Mortimer JE, Trinkaus K, Naughton MJ, Ellis M, Katzenellenbogen JA, Welch MJ, Siegel BA (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113(3):509–517. https://doi.org/10.1007/s10549-008-9953-0

    Article  CAS  PubMed  Google Scholar 

  18. van Kruchten M, de Vries EG, Brown M, de Vries EF, Glaudemans AW, Dierckx RA, Schroder CP, Hospers GA (2013) PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol 14(11):e465–e475. https://doi.org/10.1016/S1470-2045(13)70292-4

    Article  CAS  PubMed  Google Scholar 

  19. Yamada S, Tsuyoshi H, Yamamoto M, Tsujikawa T, Kiyono Y, Okazawa H, Yoshida Y (2021) Prognostic value of 16α-[(18)F]-fluoro-17β-estradiol positron emission tomography as a predictor of disease outcome in endometrial cancer: a prospective study. J Nucl Med 62:636. https://doi.org/10.2967/jnumed.120.244319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsujikawa T, Yoshida Y, Kiyono Y, Kurokawa T, Kudo T, Fujibayashi Y, Kotsuji F, Okazawa H (2011) Functional oestrogen receptor alpha imaging in endometrial carcinoma using 16alpha-[(18)F]fluoro-17beta-oestradiol PET. Eur J Nucl Med Mol Imaging 38(1):37–45. https://doi.org/10.1007/s00259-010-1589-8

    Article  CAS  PubMed  Google Scholar 

  21. van Kruchten M, de Vries EF, Arts HJ, Jager NM, Bongaerts AH, Glaudemans AW, Hollema H, de Vries EG, Hospers GA, Reyners AK (2015) Assessment of estrogen receptor expression in epithelial ovarian cancer patients using 16alpha-18F-fluoro-17beta-estradiol PET/CT. J Nucl Med 56(1):50–55. https://doi.org/10.2967/jnumed.114.147579

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida Y, Kurokawa T, Tsujikawa T, Okazawa H, Kotsuji F (2009) Positron emission tomography in ovarian cancer: 18F-deoxy-glucose and 16alpha-18F-fluoro-17beta-estradiol PET. J Ovarian Res 2(1):7. https://doi.org/10.1186/1757-2215-2-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moresco RM, Scheithauer BW, Lucignani G, Lombardi D, Rocca A, Losa M, Casati R, Giovanelli M, Fazio F (1997) Oestrogen receptors in meningiomas: a correlative PET and immunohistochemical study. Nucl Med Commun 18(7):606–615. https://doi.org/10.1097/00006231-199707000-00003

    Article  CAS  PubMed  Google Scholar 

  24. Aliaga A, Rousseau JA, Ouellette R, Cadorette J, van Lier JE, Lecomte R, Benard F (2004) Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol 31(6):761–770. https://doi.org/10.1016/j.nucmedbio.2004.02.011

    Article  CAS  PubMed  Google Scholar 

  25. Paquette M, Ouellet R, Archambault M, Croteau É, Lecomte R, Bénard F (2012) [18F]-fluoroestradiol quantitative PET imaging to differentiate ER+ and ERα-knockdown breast tumors in mice. Nucl Med Biol 39(1):57–64. https://doi.org/10.1016/j.nucmedbio.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  26. Fowler AM, Chan SR, Sharp TL, Fettig NM, Zhou D, Dence CS, Carlson KE, Jeyakumar M, Katzenellenbogen JA, Schreiber RD, Welch MJ (2012) Small-animal PET of steroid hormone receptors predicts tumor response to endocrine therapy using a preclinical model of breast cancer. J Nucl Med 53(7):1119–1126. https://doi.org/10.2967/jnumed.112.103465

    Article  CAS  PubMed  Google Scholar 

  27. Paquette M, Phoenix S, Ouellet R, Langlois R, van Lier JE, Turcotte EE, Benard F, Lecomte R (2013) Assessment of the novel estrogen receptor PET tracer 4-fluoro-11beta-methoxy-16alpha-[(18)F]fluoroestradiol (4FMFES) by PET imaging in a breast cancer murine model. Mol Imaging Biol 15(5):625–632. https://doi.org/10.1007/s11307-013-0638-7

    Article  PubMed  Google Scholar 

  28. Heidari P, Deng F, Esfahani SA, Leece AK, Shoup TM, Vasdev N, Mahmood U (2015) Pharmacodynamic imaging guides dosing of a selective estrogen receptor degrader. Clin Cancer Res 21(6):1340–1347. https://doi.org/10.1158/1078-0432.CCR-14-1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A, Tao JJ, Spratt DE, Viola-Villegas NT, Castel P, Minuesa G, Morse N, Rodón J, Ibrahim Y, Cortes J, Perez-Garcia J, Galvan P, Grueso J, Guzman M, Katzenellenbogen JA, Kharas M, Lewis JS, Dickler M, Serra V, Rosen N, Chandarlapaty S, Scaltriti M, Baselga J (2015) PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med 7(283):283ra251. https://doi.org/10.1126/scitranslmed.aaa4442

    Article  CAS  Google Scholar 

  30. Joseph JD, Darimont B, Zhou W, Arrazate A, Young A, Ingalla E, Walter K, Blake RA, Nonomiya J, Guan Z, Kategaya L, Govek SP, Lai AG, Kahraman M, Brigham D, Sensintaffar J, Lu N, Shao G, Qian J, Grillot K, Moon M, Prudente R, Bischoff E, Lee KJ, Bonnefous C, Douglas KL, Julien JD, Nagasawa JY, Aparicio A, Kaufman J, Haley B, Giltnane JM, Wertz IE, Lackner MR, Nannini MA, Sampath D, Schwarz L, Manning HC, Tantawy MN, Arteaga CL, Heyman RA, Rix PJ, Friedman L, Smith ND, Metcalfe C, Hager JH (2016) The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. elife 5:e15828. https://doi.org/10.7554/eLife.15828

    Article  PubMed  PubMed Central  Google Scholar 

  31. He S, Wang M, Yang Z, Zhang J, Zhang Y, Luo J, Zhang Y (2016) Comparison of 18F-FES, 18F-FDG, and 18F-FMISO PET imaging probes for early prediction and monitoring of response to endocrine therapy in a mouse xenograft model of ER-positive breast cancer. PLoS One 11(7):e0159916. https://doi.org/10.1371/journal.pone.0159916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Z, Yuan H, Xu X, Gu B, Wang M, Zhang J, Zhang Y, Zhang Y (2016) High specific activity is not optimal: 18F-fluoroestradiol positron emission tomography-computed tomography results in a breast cancer xenograft. J Labelled Comp Radiopharm 59(13):576–581. https://doi.org/10.1002/jlcr.3467

    Article  CAS  PubMed  Google Scholar 

  33. Salem K, Kumar M, Powers GL, Jeffery JJ, Yan Y, Mahajan AM, Fowler AM (2018) (18)F-16alpha-17beta-Fluoroestradiol binding specificity in estrogen receptor-positive breast cancer. Radiology 286(3):856–864. https://doi.org/10.1148/radiol.2017162956

    Article  PubMed  Google Scholar 

  34. Xu D, Zhuang R, You L, Guo Z, Wang X, Peng C, Zhang D, Zhang P, Wu H, Pan W, Zhang X (2018) (18)F-labeled estradiol derivative for targeting estrogen receptor-expressing breast cancer. Nucl Med Biol 59:48–55. https://doi.org/10.1016/j.nucmedbio.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Gu B, Zhang J, Zhang Y, Xu X, Yuan H, Zhang Y, Yang Z (2018) The feasibility of (18)F-FES and (18)F-FDG microPET/CT for early monitoring the effect of fulvestrant on sensitizing docetaxel by downregulating ERalpha in ERalpha+ breast cancer. Ann Nucl Med 32(4):272–280. https://doi.org/10.1007/s12149-018-1245-0

    Article  CAS  PubMed  Google Scholar 

  36. He S, Wang M, Zhang Y, Luo J, Zhang Y (2019) Monitoring the early response of fulvestrant plus tanshinone IIA combination therapy to estrogen receptor-positive breast cancer by longitudinal (18)F-FES PET/CT. Contrast Media Mol Imaging 2019:2374565. https://doi.org/10.1155/2019/2374565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jia X, Li C, Li L, Liu X, Zhou L, Zhang W, Ni S, Lu Y, Chen L, Jeong LS, Yu J, Zhang Y, Zhang J, He S, Hu X, Sun H, Yu K, Liu G, Zhao H, Zhang Y, Jia L, Shao ZM (2019) Neddylation inactivation facilitates FOXO3a nuclear export to suppress estrogen receptor transcription and improve fulvestrant sensitivity. Clin Cancer Res 25(12):3658–3672. https://doi.org/10.1158/1078-0432.ccr-18-2434

    Article  CAS  PubMed  Google Scholar 

  38. Kumar M, Salem K, Michel C, Jeffery JJ, Yan Y, Fowler AM (2019) (18)F-Fluoroestradiol PET imaging of activating estrogen receptor-alpha mutations in breast cancer. J Nucl Med 60(9):1247–1252. https://doi.org/10.2967/jnumed.118.224667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Besret L, d’Heilly S, Aubert C, Bluet G, Gruss-Leleu F, Le-Gall F, Caron A, Andrieu L, Vincent S, Shomali M, Bouaboula M, Voland C, Ming J, Roy S, Rao S, Carrez C, Jouannot E (2020) Translational strategy using multiple nuclear imaging biomarkers to evaluate target engagement and early therapeutic efficacy of SAR439859, a novel selective estrogen receptor degrader. EJNMMI Res 10(1):70. https://doi.org/10.1186/s13550-020-00646-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Antunes IF, Hospers GAP, Sijbesma JWA, Boerema AS, van Waarde A, Glaudemans A, Dierckx R, de Vries EGE, de Vries EFJ (2020) Monitoring the crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 with PET. Mol Imaging Biol 22(5):1218–1225. https://doi.org/10.1007/s11307-020-01496-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khayum MA, de Vries EF, Glaudemans AW, Dierckx RA, Doorduin J (2014) In vivo imaging of brain estrogen receptors in rats: a 16α-18F-fluoro-17β-estradiol PET study. J Nucl Med 55(3):481–487. https://doi.org/10.2967/jnumed.113.128751

    Article  CAS  PubMed  Google Scholar 

  42. Paquette M, Phoenix S, Lavallée É, Rousseau JA, Guérin B, Turcotte ÉE, Lecomte R (2020) Cross-species physiological assessment of brain estrogen receptor expression using (18)F-FES and (18)F-4FMFES PET imaging. Mol Imaging Biol 22(5):1403–1413. https://doi.org/10.1007/s11307-020-01520-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moraga-Amaro R, van Waarde A, Doorduin J, de Vries EFJ (2018) Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 30(2):e12565. https://doi.org/10.1111/jne.12565

    Article  CAS  PubMed Central  Google Scholar 

  44. Stout D, Berr SS, LeBlanc A, Kalen JD, Osborne D, Price J, Schiffer W, Kuntner C, Wall J (2013) Guidance for methods descriptions used in preclinical imaging papers. Mol Imaging 12(7):1–15

    Article  PubMed  Google Scholar 

  45. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar M, Salem K, Jeffery JJ, Yan Y, Mahajan AM, Fowler AM (2021) Longitudinal molecular imaging of progesterone receptor reveals early differential response to endocrine therapy in breast cancer with an activating ESR1 mutation. J Nucl Med 62:500. https://doi.org/10.2967/jnumed.120.249508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mullen P, Ritchie A, Langdon SP, Miller WR (1996) Effect of matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. Int J Cancer 67(6):816–820. https://doi.org/10.1002/(sici)1097-0215(19960917)67:6<816::aid-ijc10>3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  48. Noel A, Simon N, Raus J, Foidart JM (1992) Basement membrane components (matrigel) promote the tumorigenicity of human breast adenocarcinoma MCF7 cells and provide an in vivo model to assess the responsiveness of cells to estrogen. Biochem Pharmacol 43(6):1263–1267. https://doi.org/10.1016/0006-2952(92)90501-9

    Article  CAS  PubMed  Google Scholar 

  49. Mullen P (2004) The use of matrigel to facilitate the establishment of human cancer cell lines as xenografts. In: Langdon SP (ed) Cancer cell culture: methods and protocols. Humana Press, Totowa, NJ, pp 287–292. https://doi.org/10.1385/1-59259-406-9:287

    Chapter  Google Scholar 

  50. Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24(3):148–154. https://doi.org/10.1007/BF00300234

    Article  CAS  PubMed  Google Scholar 

  51. Dupont P, Warwick J (2009) Kinetic modelling in small animal imaging with PET. Methods 48(2):98–103. https://doi.org/10.1016/j.ymeth.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  52. Tremoleda JL, Kerton A, Gsell W (2012) Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res 2(1):44. https://doi.org/10.1186/2191-219x-2-44

    Article  PubMed  PubMed Central  Google Scholar 

  53. Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, Gotthardt M, Visser EP (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51(4):610–617. https://doi.org/10.2967/jnumed.109.068858

    Article  PubMed  Google Scholar 

  54. Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC (2009) Spatial resolution and sensitivity of the inveon small-animal PET scanner. J Nucl Med 50(1):139–147. https://doi.org/10.2967/jnumed.108.055152

    Article  PubMed  Google Scholar 

  55. Disselhorst JA, Boerman OC, Oyen WJG, Slump CH, Visser EP (2010) Spatial resolution of the inveon small-animal PET scanner for the entire field of view. Nucl Inst Methods Phys Res B 615(2):245–248. https://doi.org/10.1016/j.nima.2010.02.073

    Article  CAS  Google Scholar 

  56. Prasad R, Zaidi H (2014) Scatter characterization and correction for simultaneous multiple small-animal PET imaging. Mol Imaging Biol 16(2):199–209. https://doi.org/10.1007/s11307-013-0683-2

    Article  PubMed  Google Scholar 

  57. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2(3):131–137. https://doi.org/10.1162/153535003322556877

    Article  PubMed  Google Scholar 

  58. Cohen PE, Milligan SR (1993) Silastic implants for delivery of oestradiol to mice. J Reprod Fertil 99(1):219–223. https://doi.org/10.1530/jrf.0.0990219

    Article  CAS  PubMed  Google Scholar 

  59. Gordon MN, Osterburg HH, May PC, Finch CE (1986) Effective oral administration of 17 beta-estradiol to female C57BL/6J mice through the drinking water. Biol Reprod 35(5):1088–1095. https://doi.org/10.1095/biolreprod35.5.1088

    Article  CAS  PubMed  Google Scholar 

  60. Levin-Allerhand JA, Sokol K, Smith JD (2003) Safe and effective method for chronic 17beta-estradiol administration to mice. Contemp Top Lab Anim Sci 42(6):33–35

    CAS  PubMed  Google Scholar 

  61. Ingberg E, Theodorsson A, Theodorsson E, Strom JO (2012) Methods for long-term 17β-estradiol administration to mice. Gen Comp Endocrinol 175(1):188–193. https://doi.org/10.1016/j.ygcen.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  62. Ström JO, Theodorsson A, Ingberg E, Isaksson IM, Theodorsson E (2012) Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp (64):e4013. https://doi.org/10.3791/4013

  63. Chan SR, Fowler AM, Allen JA, Zhou D, Dence CS, Sharp TL, Fettig NM, Dehdashti F, Katzenellenbogen JA (2015) Longitudinal noninvasive imaging of progesterone receptor as a predictive biomarker of tumor responsiveness to estrogen deprivation therapy. Clin Cancer Res 21(5):1063–1070. https://doi.org/10.1158/1078-0432.CCR-14-1715

    Article  CAS  PubMed  Google Scholar 

  64. Kang JS, Kang MR, Han SB, Yoon WK, Kim JH, Lee TC, Lee CW, Lee KH, Lee K, Park SK, Kim HM (2009) Low dose estrogen supplementation reduces mortality of mice in estrogen-dependent human tumor xenograft model. Biol Pharm Bull 32(1):150–152. https://doi.org/10.1248/bpb.32.150

    Article  CAS  PubMed  Google Scholar 

  65. Dall G, Vieusseux J, Unsworth A, Anderson R, Britt K (2015) Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms. J Cancer 6(12):1331–1336. https://doi.org/10.7150/jca.10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuntner C, Stout D (2014) Quantitative preclinical PET imaging: opportunities and challenges. Front Phys 2(12):1–12. https://doi.org/10.3389/fphy.2014.00012

    Article  Google Scholar 

  67. Judenhofer MS, Wiehr S, Kukuk D, Fischer K, Pichler BJ (2017) Guidelines for nuclear image analysis. In: Kiessling F, Pichler BJ, Hauff P (eds) Small animal imaging: basics and practical guide, 2nd edn. Springer, New York, NY, pp 547–557

    Chapter  Google Scholar 

  68. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48(6):932–945. https://doi.org/10.2967/jnumed.106.035774

    Article  PubMed  Google Scholar 

  69. Kessler RM, Ellis JR Jr, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8(3):514–522. https://doi.org/10.1097/00004728-198406000-00028

    Article  CAS  PubMed  Google Scholar 

  70. Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648(Suppl 1):S236–S240. https://doi.org/10.1016/j.nima.2010.11.092

    Article  CAS  PubMed  Google Scholar 

  71. Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Cañadas M, Chatziioannou AF, Dinelle K, Elhami E, Jans HS, Lage E, Lecomte R, Sossi V, Surti S, Tai YC, Vaquero JJ, Vicente E, Williams DA, Laforest R (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53(8):1300–1309. https://doi.org/10.2967/jnumed.111.099382

    Article  PubMed  Google Scholar 

  72. Hume SP, Jones T (1998) Positron emission tomography (PET) methodology for small animals and its application in radiopharmaceutical preclinical investigation. Nucl Med Biol 25(8):729–732. https://doi.org/10.1016/s0969-8051(98)00055-9

    Article  CAS  PubMed  Google Scholar 

  73. Kung MP, Kung HF (2005) Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol 32(7):673–678. https://doi.org/10.1016/j.nucmedbio.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  74. Hume SP, Gunn RN, Jones T (1998) Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 25(2):173–176. https://doi.org/10.1007/s002590050211

    Article  CAS  PubMed  Google Scholar 

  75. Fischer K, Sossi V, Schmid A, Thunemann M, Maier FC, Judenhofer MS, Mannheim JG, Reischl G, Pichler BJ (2011) Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med 52(7):1133–1141. https://doi.org/10.2967/jnumed.110.086942

    Article  PubMed  Google Scholar 

  76. Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, Jeong JM, Mach RH, Mindt TL, Pike VW, Windhorst AD (2017) Consensus nomenclature rules for radiopharmaceutical chemistry - setting the record straight. Nucl Med Biol 55:v–xi. https://doi.org/10.1016/j.nucmedbio.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  77. Katzenellenbogen JA, Mathias CJ, VanBrocklin HF, Brodack JW, Welch MJ (1993) Titration of the in vivo uptake of 16 alpha-[18F]fluoroestradiol by target tissues in the rat: competition by tamoxifen, and implications for quantitating estrogen receptors in vivo and the use of animal models in receptor-binding radiopharmaceutical development. Nucl Med Biol 20(6):735–745. https://doi.org/10.1016/0969-8051(93)90160-v

    Article  CAS  PubMed  Google Scholar 

  78. Katzenellenbogen JA, Heiman DF, Carlson KE, Lloyd JE (1982) In vitro and in vivo steroid receptor assays in the design of estrogen radiopharmaceuticals. In: Eckelman W (ed) Receptor binding radiotracers, vol 1. CRC Press, Boca Raton, FL, pp 93–126

    Google Scholar 

  79. Peterson LM, Kurland BF, Link JM, Schubert EK, Stekhova S, Linden HM, Mankoff DA (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38(7):969–978. https://doi.org/10.1016/j.nucmedbio.2011.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bénard F, Ahmed N, Beauregard JM, Rousseau J, Aliaga A, Dubuc C, Croteau E, van Lier JE (2008) [18F]Fluorinated estradiol derivatives for oestrogen receptor imaging: impact of substituents, formulation and specific activity on the biodistribution in breast tumour-bearing mice. Eur J Nucl Med Mol Imaging 35(8):1473–1479. https://doi.org/10.1007/s00259-008-0745-x

    Article  CAS  PubMed  Google Scholar 

  81. Downer JB, Jones LA, Katzenellenbogen JA, Welch MJ (2001) Effect of administration route on FES uptake into MCF-7 tumors. Nucl Med Biol 28(4):397–399. https://doi.org/10.1016/S0969-8051(01)00204-9

    Article  CAS  PubMed  Google Scholar 

  82. Aide N, Visser EP, Lheureux S, Heutte N, Szanda I, Hicks RJ (2012) The motivations and methodology for high-throughput PET imaging of small animals in cancer research. Eur J Nucl Med Mol Imaging 39(9):1497–1509. https://doi.org/10.1007/s00259-012-2177-x

    Article  PubMed  PubMed Central  Google Scholar 

  83. Reilhac A, Boisson F, Wimberley C, Parmar A, Zahra D, Hamze H, Davis E, Arthur A, Bouillot C, Charil A, Grégoire MC (2016) Simultaneous scanning of two mice in a small-animal PET scanner: a simulation-based assessment of the signal degradation. Phys Med Biol 61(3):1371–1388. https://doi.org/10.1088/0031-9155/61/3/1371

    Article  CAS  PubMed  Google Scholar 

  84. Siepel FJ, van Lier MGJTB, Chen M, Disselhorst JA, Meeuwis APW, Oyen WJG, Boerman OC, Visser EP (2010) Scanning multiple mice in a small-animal PET scanner: influence on image quality. Nucl Inst Methods Phys Res B 621(1):605–610. https://doi.org/10.1016/j.nima.2010.05.057

    Article  CAS  Google Scholar 

  85. Greenwood HE, Nyitrai Z, Mocsai G, Hobor S, Witney TH (2020) High-throughput PET/CT imaging using a multiple-mouse imaging system. J Nucl Med 61(2):292–297. https://doi.org/10.2967/jnumed.119.228692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Habte F, Ren G, Doyle TC, Liu H, Cheng Z, Paik DS (2013) Impact of a multiple mice holder on quantitation of high-throughput MicroPET imaging with and without CT attenuation correction. Mol Imaging Biol 15(5):569–575. https://doi.org/10.1007/s11307-012-0602-y

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jonson SD, Bonasera TA, Dehdashti F, Cristel ME, Katzenellenbogen JA, Welch MJ (1999) Comparative breast tumor imaging and comparative in vitro metabolism of 16alpha-[18F]fluoroestradiol-17beta and 16beta-[18F]fluoromoxestrol in isolated hepatocytes. Nucl Med Biol 26(1):123–130. https://doi.org/10.1016/s0969-8051(98)00079-1

    Article  CAS  PubMed  Google Scholar 

  88. Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 24(4):341–348. https://doi.org/10.1016/s0969-8051(97)00002-4

    Article  CAS  PubMed  Google Scholar 

  89. Mathias CJ, Welch MJ, Katzenellenbogen JA, Brodack JW, Kilbourn MR, Carlson KE, Kiesewetter DO (1987) Characterization of the uptake of 16 alpha-([18F]fluoro)-17 beta-estradiol in DMBA-induced mammary tumors. Int J Rad Appl Instrum B 14(1):15–25. https://doi.org/10.1016/0883-2897(87)90156-5

    Article  CAS  PubMed  Google Scholar 

  90. Moresco RM, Casati R, Lucignani G, Carpinelli A, Schmidt K, Todde S, Colombo F, Fazio F (1995) Systemic and cerebral kinetics of 16 alpha [18F]fluoro-17 beta-estradiol: a ligand for the in vivo assessment of estrogen receptor binding parameters. J Cereb Blood Flow Metab 15(2):301–311. https://doi.org/10.1038/jcbfm.1995.35

    Article  CAS  PubMed  Google Scholar 

  91. Venema CM, Apollonio G, Hospers GA, Schroder CP, Dierckx RA, de Vries EF, Glaudemans AW (2016) Recommendations and technical aspects of 16alpha-[18F]fluoro-17beta-estradiol PET to image the estrogen receptor in vivo: the Groningen experience. Clin Nucl Med 41(11):844–851. https://doi.org/10.1097/rlu.0000000000001347

    Article  PubMed  Google Scholar 

  92. Kinahan PE, Fletcher JW (2010) Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 31(6):496–505. https://doi.org/10.1053/j.sult.2010.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  93. Adams MC, Turkington TG, Wilson JM, Wong TZ (2010) A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol 195(2):310–320. https://doi.org/10.2214/ajr.10.4923

    Article  PubMed  Google Scholar 

  94. Shoghi KI (2009) Quantitative small animal PET. Q J Nucl Med Mol Imaging 53(4):365–373

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of Wisconsin-Madison Cyclotron Laboratory for 18F production, the Radiopharmaceutical Production Facility for 18F-FES synthesis, and the University of Wisconsin Small Animal Imaging & Radiotherapy Facility (Cancer Center Support Grant: NCI P30 CA014520), including Ashley Weichmann, for small animal PET/CT scanning. We also thank the Translational Research Initiatives in Pathology laboratory, in part supported by the Department of Pathology and Laboratory Medicine and the University of Wisconsin Carbone Cancer Center Support Grant (P30 CA014520) and the Experimental Pathology Laboratory (P30 CA014520) for histology services. We are also grateful to Dr. John Katzenellenbogen for his helpful comments regarding the manuscript.

Research support for 18F-FES PET/CT small animal imaging experiments include the Philips Healthcare/Radiological Society of North America Research Seed Grant, American Cancer Society Institutional Research Grant Pilot Award, Mary Kay Innovative/Translational Cancer Research Grant, University of Wisconsin Department of Radiology, and the University of Wisconsin Carbone Cancer Center Support Grant P30 CA014520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Fowler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, M., Salem, K., Jeffery, J.J., Fowler, A.M. (2022). PET Imaging of Estrogen Receptors Using 18F-Based Radioligands. In: Eyster, K.M. (eds) Estrogen Receptors. Methods in Molecular Biology, vol 2418. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1920-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1920-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1919-3

  • Online ISBN: 978-1-0716-1920-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics