Skip to main content

Induction of Human Naïve Pluripotent Stem Cells from Somatic Cells

  • Protocol
  • First Online:
Human Naïve Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2416))

Abstract

Generating patient-specific stem cells representing the onset of development has become possible since the discovery of somatic cell reprogramming into induced pluripotent stem cells. However, human pluripotent stem cells are generally cultured in a primed pluripotent state: they are poised for differentiation and represent a stage of development corresponding to post-implantation epiblast. Here, we describe a protocol to reprogram human fibroblasts into naive pluripotent stem cells by overexpressing the transcription factors OCT4, SOX2, KLF4, and c-MYC using Sendai viruses. The resulting cells represent an earlier stage of development that corresponds to pre-implantation epiblast. We also discuss validation methods for human naive pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  Google Scholar 

  4. Vallot C, Patrat C, Collier AJ et al (2017) XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 20:102–111. https://doi.org/10.1016/j.stem.2016.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kilens S, Meistermann D, Moreno D et al (2018) Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nat Commun 9:360. https://doi.org/10.1038/s41467-017-02107-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sahakyan A, Kim R, Chronis C et al (2016) Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell 20:87–101. https://doi.org/10.1016/j.stem.2016.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pastor WA, Chen D, Liu W et al (2016) Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18:323–329. https://doi.org/10.1016/j.stem.2016.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo G, von Meyenn F, Santos F et al (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437–446. https://doi.org/10.1016/j.stemcr.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo H, Zhu P, Yan L et al (2014) The DNA methylation landscape of human early embryos. Nature 511:606–610. https://doi.org/10.1038/nature13544

    Article  CAS  PubMed  Google Scholar 

  10. Smith ZD, Chan MM, Humm KC et al (2014) DNA methylation dynamics of the human preimplantation embryo. Nature 511:611–615. https://doi.org/10.1038/nature13581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu W, Gaeta X, Sahakyan A et al (2016) Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19:476–490. https://doi.org/10.1016/j.stem.2016.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Theunissen TW, Friedli M, He Y et al (2016) Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19:502–515. https://doi.org/10.1016/j.stem.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gafni O, Weinberger L, Mansour A et al (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286. https://doi.org/10.1038/nature12745

    Article  CAS  PubMed  Google Scholar 

  14. Wu J, Platero-Luengo A, Sakurai M et al (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168:473–486. https://doi.org/10.1016/j.cell.2016.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Nefzger CM, Rossello FJ et al (2017) Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat Methods 14:1055–1062. https://doi.org/10.1038/nmeth.4436

    Article  CAS  PubMed  Google Scholar 

  16. Giulitti S, Pellegrini M, Zorzan I et al (2019) Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat Cell Biol 21:275–286. https://doi.org/10.1038/s41556-018-0254-5

    Article  CAS  PubMed  Google Scholar 

  17. David L, Polo JM (2014) Phases of reprogramming. Stem Cell Res 12:754–761. https://doi.org/10.1016/j.scr.2014.03.007

    Article  PubMed  Google Scholar 

  18. Liu X, Ouyang JF, Rossello FJ et al (2020) Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 586:101–107. https://doi.org/10.1038/s41586-020-2734-6

    Article  CAS  PubMed  Google Scholar 

  19. Boroviak T, Nichols J (2017) Primate embryogenesis predicts the hallmarks of human naive pluripotency. Development 144:175–186. https://doi.org/10.1242/dev.145177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Castel G, Meistermann D, Bretin B et al (2020) Induction of human trophoblast stem cells from somatic cells and pluripotent stem cells. Cell Rep 33(8):108419. https://doi.org/10.1016/j.celrep.2020.108419

    Article  CAS  PubMed  Google Scholar 

  21. Cinkornpumin JK, Kwon SY, Guo Y et al (2020) Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and methylome. Stem Cell Reports 15(1):198–213. https://doi.org/10.1016/j.stemcr.2020.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong C, Beltcheva M, Gontarz P et al (2020) Derivation of trophoblast stem cells from naive human pluripotent stem cells. elife 9:e52504. https://doi.org/10.7554/eLife.52504

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cornacchia D, Zhang C, Zimmer B et al (2019) Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell 25:120–136. https://doi.org/10.1016/j.stem.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paynter JM, Chen J, Liu X et al (2019) Propagation and maintenance of mouse embryonic stem cells. Methods Mol Biol 1940:33–45. https://doi.org/10.1007/978-1-4939-9086-3_3

    Article  CAS  PubMed  Google Scholar 

  25. Theunissen TW, Powell BE, Wang H et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487. https://doi.org/10.1016/j.stem.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Polo or Laurent David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Onfray, C., Tan, J.P., Kilens, S., Liu, X., Polo, J., David, L. (2022). Induction of Human Naïve Pluripotent Stem Cells from Somatic Cells. In: Rugg-Gunn, P. (eds) Human Naïve Pluripotent Stem Cells. Methods in Molecular Biology, vol 2416. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1908-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1908-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1907-0

  • Online ISBN: 978-1-0716-1908-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics