Skip to main content

Fundamental Tick Vaccinomic Approach to Evade Host Autoimmune Reaction

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2411))

Abstract

Ticks are obligate hematophagous ectoparasites that infect domestic animals, humans, and wildlife. Ticks can transmit a wide range of pathogens (viruses, rickettsia, bacteria, parasites, etc.), and some of those are of zoonotic importance. Tick-borne diseases have a negative economic impact in several tropical and subtropical countries. With climate change, tick distribution and tick-associated pathogens have increased. Currently, tick control procedures have more environmental drawbacks and there are pitfalls in vaccination process. Since vaccinations have helped to prevent several diseases and infections, several vaccination trials are ongoing to control ticks and tick-borne pathogens. However, autoimmune reactions to vaccinations are reported as an adverse reaction since vaccines were used to protect against disease in humans and animals. The antibodies against the vaccine antigen might harm similar antigen in the host. Therefore, in this chapter, we attempt to shed light on the importance of raising awareness of possible adverse events associated with vaccinations and the methods that should be used to address this problem. In silico and lab work should be performed ahead of the vaccination process to evaluate the vaccine candidates and avoid the vaccination opposing consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galay RL, Aung KM, Umemiya-Shirafuji R et al (2013) Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. J Exp Biol 216:1905–1915

    CAS  PubMed  Google Scholar 

  2. Bhowmick B, Han Q (2020) Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Front Vet Sci 7:319. https://doi.org/10.3389/fvets.2020.00319

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ali A, Mulenga A, Vaz IS Jr (2020) Editorial: tick and tick-borne pathogens: molecular and immune targets for control strategies. Front Physiol 11:744. https://doi.org/10.3389/fphys.2020.00744

    Article  PubMed  PubMed Central  Google Scholar 

  4. Almazán C, Šimo L, Fourniol L et al (2020) Multiple antigenic peptide-based vaccines targeting Ixodes ricinus neuropeptides induce a specific antibody response but do not impact tick infestation. Pathogens 9:900. https://doi.org/10.3390/pathogens9110900

  5. Tanaka T (2020) Physiological features of blood feeding and anti-tick vaccine on tick. Med Entomol Zool 71:57–64

    Article  Google Scholar 

  6. Galay RL, Miyata T, Umemiya-Shirafuji R et al (2014) Evaluation and comparison of the potential of two ferritins as anti-tick vaccines against Haemaphysalis longicornis. Parasit Vectors 7:482

    Article  PubMed  PubMed Central  Google Scholar 

  7. Almazán C, Fourniol L, Rakotobe S et al (2020) Failed disruption of tick feeding, viability, and molting after immunization of mice and sheep with recombinant Ixodes ricinus salivary proteins IrSPI and IrLip1. Vaccine 8:47. https://doi.org/10.3390/vaccines8030475

    Article  CAS  Google Scholar 

  8. Rodríguez-Mallon A, Encinosaa PE, Méndez-Pérez L et al (2015) High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis 6:530–537

    Article  PubMed  Google Scholar 

  9. Rodríguez-Mallona A, Fernández E, Encinosaa PE et al (2012) A novel tick antigen shows high vaccine efficacy against the dog tick, Rhipicephalus sanguineus. Vaccine 30:1782–1789

    Article  Google Scholar 

  10. De Martino M, Chiappini E, Galli L (2013) Vaccines and autoimmunity. Int J Immunopathol Pharmacol 26:283–290

    Article  PubMed  Google Scholar 

  11. Hammoudi D, Sanyaolu AO, Orish VN et al (2015) Induction of autoimmune diseases following vaccinations: a review. SM J Vaccine Res 1:1011

    Google Scholar 

  12. Vadalà M, Poddighe D, Laurino C et al (2017) Vaccination and autoimmune diseases is prevention of adverse health effects on the horizon? EPMA J 8:295–311

    Article  PubMed  PubMed Central  Google Scholar 

  13. Segal Y, Shoenfeld Y (2018) Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol 14:1–9

    Google Scholar 

  14. Moreno-Cida JA, Pérez de la Lastraa JM, Villar M et al (2013) Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine 31:1187–1196

    Article  Google Scholar 

  15. Merino O, Antunes S, Mosqueda J et al (2013) Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine 31:5889–5896

    Article  CAS  PubMed  Google Scholar 

  16. Contreras M, Villar M, de la Fuente J (2019) A Vaccinomics approach for the identification of tick protective antigens for the control of Ixodes ricinus and Dermacentor reticulatus infestations in companion animals. Front Physiol 10:977. https://doi.org/10.3389/fphys.2019.00977

    Article  PubMed  PubMed Central  Google Scholar 

  17. Campbell EM, Burdin M, Hoppler S et al (2010) Role of an aquaporin in the sheep tick Ixodes ricinus: assessment as a potential control target. Int J Parasitol 40:15–23. https://doi.org/10.1016/j.ijpara.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  18. Ndekezi C, Nkamwesiga J, Ochwo S et al (2019) Identification of ixodid tick-specific aquaporin-1 potential anti-tick vaccine epitopes: an in-silico analysis. Front Bioeng Biotechnol 7:236. https://doi.org/10.3389/fbioe.2019.00236

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hansson H, Trowald-Wigh G, Karlsson-Parra A (1996) Detection of antinuclear antibodies by indirect immunofluorescence in dog sera: comparison of rat liver tissue and human epithelial-2 cells as antigenic substrate. J Vet Intern Med 10:199–203

    Article  CAS  PubMed  Google Scholar 

  20. Bell SC, Hughes DE, Bennett D et al (1997) Analysis and significance of anti-nuclear antibodies in dogs. Res Vet Sci 62:83–84

    Article  CAS  PubMed  Google Scholar 

  21. DiUlio M (1999) Veterinary immunology and serology. Lab Med 30:36–40

    Article  Google Scholar 

  22. Wiik AS, Madsen MH, Forslid J et al (2010) Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells. J Autoimmun 35:276e290

    Article  Google Scholar 

  23. Bremer HD, Lattwein E, Renneker S et al (2015) Identification of specific antinuclear antibodies in dogs using a line immunoassay and enzyme-linked immunosorbent assay. Vet Immunol Immunopathol 168:233–241

    Article  CAS  PubMed  Google Scholar 

  24. Dellavance A, Andrade LE (2019) Detection of autoantibodies by indirect immunofluorescence Cytochemistry on Hep-2 cells. Methods Mol Biol 1901:19–46. https://doi.org/10.1007/978-1-4939-8949-2_3

    Article  CAS  PubMed  Google Scholar 

  25. Kumar Y, Bhatia A, Minz RW (2009) Antinuclear antibodies and their detection methods in diagnosis of connective tissue diseases: a journey revisited. Diagn Pathol 4:1. https://doi.org/10.1186/1746-1596-4-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suarez CE, Bishop RP, Alzan HF et al (2017) Advances in the application of genetic manipulation methods to apicomplexan parasites. Int J Parasitol 47:701–710

    Article  CAS  PubMed  Google Scholar 

  27. Rodríguez-Mallona A (2016) Developing anti-tick vaccines. Methods Mol Biol 1404:243–259. https://doi.org/10.1007/978-1-4939-3389-1_17

    Article  Google Scholar 

  28. Galay RL, Miyata T, Umemiya-Shirafuji R et al (2016) Host immunization with recombinant proteins to screen antigens for tick control. Methods Mol Biol 1404:261–273. https://doi.org/10.1007/978-1-4939-3389-1_18

    Article  PubMed  Google Scholar 

  29. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  30. Ladunga I (2009) Finding similar nucleotide sequences using network blast searches. Curr Protoc Bioinformatics 58:3.3.1–3.3.25. https://doi.org/10.1002/0471250953.bi0303s26

    Article  Google Scholar 

  31. Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. https://doi.org/10.1093/nar/gkg563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rédei GP (2008) BLASTP. In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Springer Netherlands, Dordrecht, p 221. https://doi.org/10.1007/978-1-4020-6754-9_1881

    Chapter  Google Scholar 

  34. Pearson WR (2013) Selecting the right similarity-scoring matrix. Curr Protoc Bioinformatics 43:3.5.1–3.5.9. https://doi.org/10.1002/0471250953.bi0305s43

    Article  Google Scholar 

  35. Edgar RC, Drive RM, Valley M (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Madeira F, Park Y, Lee J et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamura K, Stecher G, Peterson D et al (2013) Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis acrosscomputing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dalgaard, P. (Producer), R Development Core Team (2010) R: A language and environment for statistical computing. Computer programme. http://www.R-project.org/

  40. Bailey TL, Williams N, Misleh C et al (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. https://doi.org/10.1093/nar/gkl198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bailey TL, Boden M, Buske FA et al (2009) MEME S UITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  Google Scholar 

  42. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. Unit Struct Mol Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  Google Scholar 

  43. Eswar N, Webb B, Marti-Renom MA et al (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 50:2.9.1–2.9.31. https://doi.org/10.1002/0471140864.ps0209s50

    Article  Google Scholar 

  44. Sippl M, Kringelum J (1993) Recognition of errors in the three-dimensional structures. Proteins Struct Funct Genet 17:355–362. https://doi.org/10.1002/prot.340170404

    Article  CAS  PubMed  Google Scholar 

  45. Kleywegt GJ, Jones TA (1996) Phi/Psi-chology: Ramachandran revisited. Structure 4:1395–1400. https://doi.org/10.1016/S0969-2126(96)00147-5

    Article  CAS  PubMed  Google Scholar 

  46. Lovell SC, Davis IW, Iii WBA et al (2003) Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins 50:437–450. https://doi.org/10.1002/prot.10286

    Article  CAS  PubMed  Google Scholar 

  47. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13:222–245. https://doi.org/10.1021/bi00699a002

    Article  CAS  PubMed  Google Scholar 

  49. Emini EA, Hughes JV, Perlow DS et al (1985) Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins - a tool for the selection of peptide antigens. Naturwissenschaften 72:212–213. https://doi.org/10.1007/BF01195768

    Article  CAS  Google Scholar 

  51. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174. https://doi.org/10.1016/0014-5793(90)80535-Q

    Article  CAS  PubMed  Google Scholar 

  52. Parker J, Guo D, Hodges R (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432. https://doi.org/10.1021/bi00367a013

    Article  CAS  PubMed  Google Scholar 

  53. Jespersen MC, Peters B, Nielsen M et al (2017) BepiPred2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. https://doi.org/10.1093/nar/gkx346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kringelum JV, Lundegaard C, Lund O et al (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829. https://doi.org/10.1371/journal.pcbi.1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Potocnakova L, Bhide M, Pulzova LB (2016) An introduction to B-cell epitope mapping and in silico epitope prediction. J Immunol Res 2016:6760830. https://doi.org/10.1155/2016/6760830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kasaija PD, Contreras M, Kabi F et al (2020) Vaccination with recombinant subolesin antigens provides cross-tick species protection in Bos indicus and crossbred cattle in Uganda. Vaccine 8:319. https://doi.org/10.3390/vaccines8020319

    Article  CAS  Google Scholar 

  57. Mahmoud MS, Kandil OM, Abu El-Ezz NT et al (2020) Identification and antigenicity of the Babesia caballi spherical body protein 4 (SBP4). Parasit Vectors 13:369. https://doi.org/10.1186/s13071-020-04241-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  59. Kurien BT, Scofield RH (2015) Multiple immunoblots by passive diffusion of proteins from a single SDS-PAGE gel. Methods Mol Biol 1312:77–86. https://doi.org/10.1007/978-1-4939-2694-7_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knorr S, Anguita J, Cortazar JT et al (2018) Preliminary evaluation of tick protein extracts and recombinant ferritin 2 as anti-tick vaccines targeting Ixodes ricinus in cattle. Front Physiol 9:1696. https://doi.org/10.3389/fphys.2018.01696

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was supported by a joint research grant from the Science and Technology Development Fund [STDF], Egypt (Grant Number 42839) and the Japan Society for the Promotion of Science [JSPS] Bilateral Program, Japan (Grant Number JPJSBP120206002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hendawy, S.H.M., Alzan, H.F., Tanaka, T., Mahmoud, M.S. (2022). Fundamental Tick Vaccinomic Approach to Evade Host Autoimmune Reaction. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics