Skip to main content

CRISPR Engineering of Bacteriophage T4 to Design Vaccines Against SARS-CoV-2 and Emerging Pathogens

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2410))

Abstract

The COVID-19 pandemic brought to the fore the urgent need for vaccine design and delivery platforms that can be rapidly deployed for manufacture and distribution. Though the mRNA and adenoviral vector platforms have been enormously successful to control SARS-CoV-2 viral infections, it is unclear if this could be replicated against more complex pathogens or the emerging variants. Recently, we described a “universal” platform that can incorporate multiple vaccine targets into the same nanoparticle scaffold by CRISPR engineering of bacteriophage T4. A T4-COVID vaccine designed with this technology elicited broad immunogenicity and complete protection against virus challenge in a mouse model. Here, we describe the detailed methodology to generate recombinant bacteriophage T4 backbones using CRISPR that can also be broadly applicable to other bacteriophages that abundantly pervade the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu N et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733

    Article  CAS  Google Scholar 

  2. Zhou P et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  Google Scholar 

  3. Li F (2016) Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 3(1):237–261

    Article  CAS  Google Scholar 

  4. V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V (2020) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19:155–170

    Article  Google Scholar 

  5. Chung YH, Beiss V, Fiering SN, Steinmetz NF (2020) COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano 14(10):12522–12537

    Article  CAS  Google Scholar 

  6. Shin MD et al (2020) COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol 15(8):646–655

    Article  CAS  Google Scholar 

  7. Dong Y et al (2020) A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 5(1):237

    Article  CAS  Google Scholar 

  8. Su S, Du L, Jiang S (2020) Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol 19:211–219

    Article  Google Scholar 

  9. Corbett KS et al (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586(7830):567–571

    Article  CAS  Google Scholar 

  10. Yang J et al (2020) A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 586(7830):572–577

    Article  CAS  Google Scholar 

  11. Ewer KJ et al (2020) T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med 27:270–278

    Article  Google Scholar 

  12. Krammer F (2020) SARS-CoV-2 vaccines in development. Nature 586(7830):516–527

    Article  CAS  Google Scholar 

  13. Park KS, Sun X, Aikins ME, Moon JJ (2020) Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev 169:137–151

    Article  Google Scholar 

  14. Walls AC et al (2020) Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183(5):1367–1382.e1317

    Article  CAS  Google Scholar 

  15. Sette A, Crotty S (2021) Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184(4):861–880

    Article  CAS  Google Scholar 

  16. Gaebler C et al (2021) Evolution of antibody immunity to SARS-CoV-2. Nature 591(7851):639–644

    Article  CAS  Google Scholar 

  17. Tan TK et al (2021) A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nat Commun 12(1):542

    Article  CAS  Google Scholar 

  18. Ma X et al (2020) Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity 53(6):1315–1330.e1319

    Article  CAS  Google Scholar 

  19. Zhu J et al (2021) A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Science Advances 7:eabh1547

    Google Scholar 

  20. Ishii T, Yanagida M (1977) The two dispensable structural proteins (soc and hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro. J Mol Biol 109(4):487–514

    Article  CAS  Google Scholar 

  21. Fokine A et al (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 101(16):6003–6008

    Article  CAS  Google Scholar 

  22. Fokine A et al (2011) Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage. J Virol 85(16):8141–8148

    Article  CAS  Google Scholar 

  23. Li Q, Shivachandra SB, Zhang Z, Rao VB (2007) Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J Mol Biol 370(5):1006–1019

    Article  CAS  Google Scholar 

  24. Tao P et al (2013) In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci U S A 110(15):5846–5851

    Article  CAS  Google Scholar 

  25. Tao P et al (2013) Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog 9(7):e1003495

    Article  CAS  Google Scholar 

  26. Shivachandra SB et al (2007) Multicomponent anthrax toxin display and delivery using bacteriophage T4. Vaccines 25(7):1225–1235

    Article  CAS  Google Scholar 

  27. Tao P et al (2018) A bacteriophage T4 nanoparticle-based dual vaccine against anthrax and plague. MBio 9(5):e01926

    Article  Google Scholar 

  28. Zhu J et al (2019) A prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Sci Adv 5(8):eaax0064

    Article  CAS  Google Scholar 

  29. Tao P, Zhu J, Mahalingam M, Batra H, Rao VB (2018) Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 145:57–72

    Article  Google Scholar 

  30. Tao P et al (2017) A bivalent anthrax-plague vaccine that can protect against two tier-1 bioterror pathogens, Bacillus anthracis and Yersinia pestis. Front Immunol 8:687

    Article  Google Scholar 

  31. Plattner M et al (2019) Structure and function of the branched receptor-binding complex of bacteriophage CBA120. J Mol Biol 431(19):3718–3739

    Article  CAS  Google Scholar 

  32. Tao P, Wu X, Tang WC, Zhu J, Rao V (2017) Engineering of bacteriophage T4 genome using CRISPR-Cas9. ACS Synth Biol 6(10):1952–1961

    Article  Google Scholar 

  33. Liu Y et al (2020) Covalent modifications of bacteriophage genome confer a degree of resistance to bacterial CRISPR systems. J Virol 94:e01630. https://doi.org/10.1128/JVI.01630-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gause KT et al (2017) Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano 11:54–68

    Article  CAS  Google Scholar 

  35. Mandala VS et al (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 27(12):1202–1208

    Article  CAS  Google Scholar 

  36. Esvelt KM et al (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121

    Article  CAS  Google Scholar 

  37. Zhu J, Tao P, Mahalingam M, Rao VB (2020) Preparation of a bacteriophage T4-based prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Bio-protocol 10(7):e3573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIAID/NIH supplement grant 3R01AI095366-07S1 (subaward: 1100992-100) and in part by NIAID/NIH grants AI111538 and AI081726 and National Science Foundation grant MCB-0923873 to V.B.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venigalla B. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, J., Ananthaswamy, N., Jain, S., Batra, H., Tang, WC., Rao, V.B. (2022). CRISPR Engineering of Bacteriophage T4 to Design Vaccines Against SARS-CoV-2 and Emerging Pathogens. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2410. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1884-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1884-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1883-7

  • Online ISBN: 978-1-0716-1884-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics