Skip to main content

An Improvised Hairy Root Transformation Method for Efficient Gene Silencing in Roots and Nodules of Arachis hypogaea

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2408))

Abstract

Peanut (Arachis hypogaea) is a major oilseed crop and is widely cultivated in tropical and subtropical climate zone worldwide. Peanut belongs to the Papilionoid family with an atypical nodule developmental program. In particular, rhizobia enter through developmental cracks and lead to the formation of aeschynomenoid subtype determinate nodules. Peanut nodules are efficient nitrogen-fixers and form swollen bacteroid containing symbiosomes. The allotetraploid genome and recalcitrance to stable transformation used to be the major bottleneck for peanut biologists. Recent genome sequencing of peanut cultivar Tifrunner has opened up a huge opportunity for molecular research. A composite plant contains transformed roots with a non-transformed shoot. The composite plant-based approach has already proven to be a tool of choice for high throughput studies in root biology. The available protocols failed to generate efficient hairy root transformation in the genome sequenced cultivar Tifrunner. Here we describe an efficient hairy root transformation and composite plant generation protocol for the peanut cultivar Tifrunner. Our protocol generated ~92% plant regeneration efficiency with between 21.8% and 58.6% co-transformed root regeneration. We also show that this protocol can be efficiently used for protein localization, promoter GUS analysis, monitoring hormone response, and RNAi mediated knockdown of the genes using genome sequenced cultivar Tifrunner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertioli DJ, Jenkins J, Clevenger J et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51(5):877–884

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Lu Q, Liu H et al (2019) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12(7):920–934

    Article  CAS  PubMed  Google Scholar 

  3. Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144(2):575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boogerd FC, van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21(1):5–27

    Article  CAS  Google Scholar 

  5. Sharma V, Bhattacharyya S, Kumar R et al (2020) Molecular basis of root nodule Symbiosis between Bradyrhizobium and ‘crack-Entry’Legume groundnut (Arachis hypogaea L.). Plants 9(2):276

    Article  CAS  PubMed Central  Google Scholar 

  6. Ibáñez F, Wall L, Fabra A (2017) Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. J Exp Bot 68(8):1905–1918

    PubMed  Google Scholar 

  7. Krishna G, Singh BK, Kim EK et al (2015) Progress in genetic engineering of peanut (Arachis hypogaea L.)—a review. Plant Biotechnol J 13(2):147–162

    Article  CAS  PubMed  Google Scholar 

  8. Lacorte C, Mansur E, Timmerman B et al (1991) Gene transfer into peanut (Arachis hypogaea L.) by Agrobacterium tumefaciens. Plant Cell Rep 10(6–7):354–357

    CAS  PubMed  Google Scholar 

  9. Gantait S, Mondal S (2018) Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol 16(2):537–544

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ozias-Akins P, Schnall JA, Anderson WF et al (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93(1–2):185–194

    Article  CAS  Google Scholar 

  11. Chu Y, Bhattacharya A, Wu C et al (2013) Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR. In Vitro Cell Dev Biol Plant 49(3):266–275

    Article  CAS  Google Scholar 

  12. Chilton M-D, Tepfer DA, Petit A et al (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295 (5848):432–434

    Google Scholar 

  13. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100(3):463–473

    Article  CAS  Google Scholar 

  14. Tschofen M, Knopp D, Hood E et al (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9(1):271–294. https://doi.org/10.1146/annurev-anchem-071015-041706

    Article  Google Scholar 

  15. Gutierrez-Valdes N, Häkkinen ST, Lemasson C et al (2020) Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci 11:33

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mano Y, Nabeshima S, Matsui C et al (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50(11):2715–2722

    CAS  Google Scholar 

  17. Georgiev MI, Agostini E, Ludwig-Müller J et al (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537

    Article  CAS  PubMed  Google Scholar 

  18. Sinharoy S, DasGupta M (2009) RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. Mol Plant-Microbe Interact 22(11):1466–1475

    Article  CAS  PubMed  Google Scholar 

  19. Qiu W, Wang N, Dai J et al (2019) AhFRDL1-mediated citrate secretion contributes to adaptation to iron deficiency and aluminum stress in peanuts. J Exp Bot 70(10):2873–2886

    Article  CAS  PubMed  Google Scholar 

  20. Sonti R, Chiurazzi M, Wong D et al (1995) Arabidopsis mutants deficient in T-DNA integration. Proc Natl Acad Sci U S A 92(25):11786–11790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stougaard J, Petersen TE, Marcker KA (1987) Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus. Proc Natl Acad Sci U S A 84(16):5754–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sinharoy S, Pislariu CI, Udvardi MK (2015) A high-throughput RNA interference (RNAi)-based approach using hairy roots for the study of plant–rhizobia interactions. In: Plant gene silencing. Springer, New York, pp 159–178

    Chapter  Google Scholar 

  23. Limpens E, Ramos J, Franken C et al (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55(399):983–992

    Article  CAS  PubMed  Google Scholar 

  24. Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant-Microbe Interact 16(8):663–668

    Article  CAS  PubMed  Google Scholar 

  25. Cai Y, Chen L, Liu X et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10(8):e0136064

    Article  PubMed  PubMed Central  Google Scholar 

  26. Butler NM, Jansky SH, Jiang J (2020) First-generation genome editing in potato using hairy root transformation. Plant Biotechnol J 18(11):2201–2209. https://doi.org/10.1111/pbi.13376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonaldi K, Gherbi H, Franche C et al (2010) The nod factor–independent symbiotic signaling pathway: development of Agrobacterium rhizogenes–mediated transformation for the legume Aeschynomene indica. Mol Plant-Microbe Interact 23(12):1537–1544

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Wang L, Tan Q et al (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333

    PubMed  PubMed Central  Google Scholar 

  29. Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166(2):455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agarwal G, Clevenger J, Pandey MK et al (2018) High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16(11):1954–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chopra R, Burow G, Farmer A et al (2015) Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L. Mol Gen Genomics 290(3):1169–1180

    Article  CAS  Google Scholar 

  32. Clevenger J, Chu Y, Scheffler B et al (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guimaraes LA, Pereira BM, Araujo ACG et al (2017) Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies. Plant Methods 13(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sinharoy S, Saha S, Chaudhury SR et al (2009) Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non–infection thread legume of the Aeschynomeneae tribe. Mol Plant-Microbe Interact 22(2):132–142

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Su L, Liu S et al (2016) Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes. Biotechnol Biotechnol Equip 30 (5):869–878

    Google Scholar 

  36. Boisson-Dernier A, Chabaud M, Garcia F et al (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14 (6):695–700

    Google Scholar 

  37. Streeter J (2007) Factors affecting the survival of Bradyrhizobium applied in liquid cultures to soya bean [Glycine max (L.) Merr.] seeds. J Appl Microbiol 103(4):1282–1290

    Article  CAS  PubMed  Google Scholar 

  38. Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80(6):1151–1163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Janila Pasupuleti and Vania C. R. Azevedo, ICRISAT, India for providing A. hypogaea cultivar Tifrunner seeds, Michael Udvardi, Nobel Research Institute, Oklahoma, USA for A. rhizogenes ARqua1 strain, M. DasGupta, Department of Biochemistry, University of Calcutta, for providing A. rhizogenes R1000 strain, Fernando Ibáñez, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Argentina, for Bradyrhizobium SEMIA 6144, S. Takuya, University of Tsukuba, Tsukuba, Japan, for providing the DR5-GFP-NLS construct, NIPGR for their confocal facilities; CIF-NIPGR; NIPGR-DELCON for their support. This work is supported by core research grant from National Institute of Plant Genome Research, Ramalingaswami Re-entry grant, DBT (BT/RLF/Re-entry/41/2013) and SERB ECR grant (ECR/2018/001215) and Mr. Bikash Raul’s fellowship is supported by CSIR (File No. 09/803(0141)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senjuti Sinharoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raul, B., Sinharoy, S. (2022). An Improvised Hairy Root Transformation Method for Efficient Gene Silencing in Roots and Nodules of Arachis hypogaea. In: Mysore, K.S., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 2408. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1875-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1875-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1874-5

  • Online ISBN: 978-1-0716-1875-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics