Skip to main content

Identifying Membrane Lateral Organization by Contrast-Matched Small Angle Neutron Scattering

  • Protocol
  • First Online:
Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

Abstract

Lipid domains in model membranes are routinely studied to provide insight into the physical interactions that drive raft formation in cellular membranes. Using small angle neutron scattering, contrast-matching techniques enable the detection of lipid domains ranging from tens to hundreds of nanometers which are not accessible to other techniques without the use of extrinsic probes. Here, we describe a probe-free experimental approach and model-free analysis to identify lipid domains in freely floating vesicles of ternary phase separating lipid mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572. https://doi.org/10.1038/42408

    Article  CAS  Google Scholar 

  2. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50. https://doi.org/10.1126/science.1174621

    Article  CAS  Google Scholar 

  3. Levental I, Levental KR, Heberle FA (2020) Lipid rafts: controversies resolved, mysteries remain. Trend Cell Biol 30(5):341–353. https://doi.org/10.1016/j.tcb.2020.01.009

    Article  CAS  Google Scholar 

  4. Heberle FA, Doktorova M, Scott HL, Skinkle AD, Waxham MN, Levental I (2020) Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc Natl Acad Sci U S A 117(33):19943–19952. https://doi.org/10.1073/PNAS.2002200117

    Article  CAS  Google Scholar 

  5. Cornell CE, Mileant A, Thakkar N, Lee KK, Keller SL (2020) Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc Natl Acad Sci U S A 117(33):19713–19719. https://doi.org/10.1073/PNAS.2002245117

    Article  CAS  Google Scholar 

  6. Marsh D (2009) Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. Biochim Biophys Acta Bioenerg 1788(10):2114–2123. https://doi.org/10.1016/j.bbamem.2009.08.004

    Article  CAS  Google Scholar 

  7. Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta Biomembr 1788:47–52. https://doi.org/10.1016/j.bbamem.2008.08.014

    Article  CAS  Google Scholar 

  8. Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85(5):3074–3083. https://doi.org/10.1016/S00063495(03)747262

    Article  CAS  Google Scholar 

  9. Konyakhina TM, Wu J, Mastroianni JD, Heberle FA, Feigenson GW (2013) Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol. Biochim Biophys Acta Biomembr 1828(9):2204–2214. https://doi.org/10.1016/j.bbamem.2013.05.020

    Article  CAS  Google Scholar 

  10. Konyakhina TM, Feigenson GW (2016) Phase diagram of a polyunsaturated lipid mixture: brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol. Biochim Biophys Acta Biomembr 1858(1):153–161. https://doi.org/10.1016/j.bbamem.2015.10.016

    Article  CAS  Google Scholar 

  11. Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW (2010) Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 99(10):3309–3318. https://doi.org/10.1016/j.bpj.2010.09.064

    Article  CAS  Google Scholar 

  12. Silvius JR (2003) Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. Biophys J 85(2):1034–1045. https://doi.org/10.1016/S00063495(03)745421

    Article  CAS  Google Scholar 

  13. Elson EL, Fried E, Dowbow JE, Genin GM (2010) Phase separation in biological membranes: integration of theory and experiment. Ann Rev Biophys 39:207–226. https://doi.org/10.1146/annurev.biophys.093008.131238.Phase

    Article  CAS  Google Scholar 

  14. Heberle FA, Petruzielo RS, Pan J, Drazba P, Kučerka N, Standaert RF, Feigenson GW, Katsaras J (2013) Bilayer thickness mismatch controls domain size in model membranes. J Am Chem Soc 135(18):6853–6859. https://doi.org/10.1021/ja3113615

    Article  CAS  Google Scholar 

  15. Scott HL, Baker JR, Frederick AJ, Kennison KB, Mendes K, Heberle FA (2020) FRET from phase-separated vesicles: an analytical solution for a spherical geometry. 233(September):104982. https://doi.org/10.1016/j.chemphyslip.2020.104982

  16. Owen DM, Gaus K (2013) Imaging lipid domains in cell membranes: the advent of superresolution fluorescence microscopy. Front Plant Sci 4(503):1–9. https://doi.org/10.3389/fpls.2013.00503

    Google Scholar 

  17. Sezgin E (2017) Superresolution optical microscopy for studying membrane structure and dynamics. J Phys Conden Matt 29(27):aa7185. https://doi.org/10.1088/1361648X/aa7185

  18. Zhanghao K, Liu W, Li M, Wu Z, Wang X, Chen X, Shan C, Wang H, Chen X, Dai Q, Xi P, Jin D (2020) High-dimensional superresolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun. 11(1):1–10. https://doi.org/10.1038/s4146702019747-0

    Article  Google Scholar 

  19. Zhao J, Wu J, Shao HL, Kong F, Jain N, Hunt G, Feigenson G (2007) Phase studies of model biomembranes: macroscopic coexistence of L alpha plus L beta, with light-induced coexistence of L alpha plus Lo Phases. Biochim Biophys Acta Biomembr 1768(11):2777–2786. https://doi.org/10.1016/j.bbamem.2007.07.009.Phase

    Article  CAS  Google Scholar 

  20. Tsubone TM, Junqueira HC, Baptista MS, Itri R (2019) Contrasting roles of oxidized lipids in modulating membrane microdomains. Biochim Biophys Acta Biomembr 1861(3):660–669. https://doi.org/10.1016/j.bbamem.2018.12.017

    Article  CAS  Google Scholar 

  21. Morales-Penningston NF, Wu J, Farkas ER, Goh SL, Konyakhina TM, Zheng JY, Webb WW, Feigenson GW (2010) GUV preparation and imaging: Minimizing artifacts. Biochim Biophys Acta 1798:1324–1332. https://doi.org/10.1016/j.bbamem.2010.03.011

    Article  CAS  Google Scholar 

  22. Pencer J, Mills T, Anghel V, Krueger S, Epand RM, Katsaras J (2005) Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. Eur. Phys. J. E 18(4):447–458. https://doi.org/10.1140/epje/e2005000465

    Article  CAS  Google Scholar 

  23. Anghel VN, Pencer J, Kučerka N, Katsaras J (2007) Scattering from laterally heterogeneous vesicles. I. Model-independent analysis. J. Appl. Crystall. 39(4):791–796. https://doi.org/10.1107/S002188980701206X

    Google Scholar 

  24. DiPasquale M, Nguyen MH, Rickeard BW, Cesca N, Tannous C, Castillo SR, Katsaras J, Kelley EG, Heberle FA, Marquardt D (2020) The antioxidant vitamin E as a membrane raft modulator: tocopherols do not abolish lipid domains. Biochim Biophys Biomembr 1862(8):183189. https://doi.org/10.1016/j.bbamem.2020.183189

    Google Scholar 

  25. Baykal-Caglar E, Hassan-Zadeh E, Saremi B, Huang J (2012) Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity. Biochim Biophys Acta Biomembr 1818(11):2598–2604. https://doi.org/https://doi.org/10.1016/j.bbamem.2012.05.023

    Article  CAS  Google Scholar 

  26. Porod G (1982) General theory. In: Glatter O, Kratky O (eds) Small angle x-ray scattering. Academic Press, Cambridge, pp. 17–53. https://doi.org/doi.org/10.1002/actp.1985.010360520

    Google Scholar 

  27. Pencer J, Anghel VN, Kučerka N, Katsaras J (2006) Scattering from laterally heterogeneous vesicles. II. The form factor. J Appl Crystall 38(4):513–525. https://doi.org/10.1107/S0021889806035163

    Google Scholar 

  28. Turkyilmaz S, Chen WH, Mitomo H, Regen SL (2009) Loosening and reorganization of fluid phospholipid bilayers by chloroform. J Am Chem Soc 131(14):5068–5069. https://doi.org/10.1021/ja9011468

    Article  CAS  Google Scholar 

  29. Reigada R (2011) Influence of chloroform in liquid-ordered and liquid-disordered phases in lipid membranes. J Phys Chem B 115(11):2527–2535. https://doi.org/10.1021/jp110699h

    Article  CAS  Google Scholar 

  30. Nguyen MH, DiPasquale M, Rickeard BW, Stanley CB, Kelley EG, Marquardt D (2019) Methanol accelerates DMPC flip-flop and transfer: a SANS study on lipid dynamics. Biophys J 116(5):755–759. https://doi.org/10.1016/j.bpj.2019.01.021

    Article  CAS  Google Scholar 

  31. Kaasgaard T, Mouritsen OG, Jørgensen K (2003) Freeze/thaw effects on lipid-bilayer vesicles investigated by differential scanning calorimetry. Biochim Biophys Acta Biomembr 1615(1):77–83. https://doi.org/https://doi.org/10.1016/S00052736(03)001949

    Article  CAS  Google Scholar 

  32. Scott HL, Skinkle A, Kelley EG, Waxham MN, Levental I, Heberle FA (2019) On the mechanism of bilayer separation by extrusion, or why your LUVs are not really unilamellar. Biophys J 117(8):1381–1386. https://doi.org/10.1016/j.bpj.2019.09.006

    Article  CAS  Google Scholar 

  33. Greenwood AI, Tristram-Nagle S, Nagle JF (2006) Partial molecular volumes of lipids and cholesterol. Chem Phys Lipid 143(1-2):1–10. https://doi.org/10.1016/j.chemphyslip.2006.04.002

    Article  CAS  Google Scholar 

  34. Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF (2002) Structure of gel phase DMPC determined by x-ray diffraction. Biophys J 83(6):3324–3335. https://doi.org/10.1016/S00063495(02)753332

    Article  CAS  Google Scholar 

  35. Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kučerka N (2012) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim Biophys Acta Biomembr 1818(9):2135–2148. https://doi.org/10.1016/j.bbamem.2012.05.007

    Article  CAS  Google Scholar 

  36. Kučerka N, Van Oosten B, Pan J, Heberle FA, Harroun TA, Katsaras J (2015) Molecular structures of fluid phosphatidylethanolamine bilayers obtained from simulation-to-experiment comparisons and experimental scattering density profiles. J. Phys. Chem. B 119(5):1947–1956. https://doi.org/10.1021/jp511159q

    Article  Google Scholar 

  37. Pan J, Cheng X, Monticelli L, Heberle FA, Kučerka N, Tieleman DP, Katsaras J (2014) The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations. Soft Matt 10(21):3716. https://doi.org/10.1039/c4sm00066h

    Article  CAS  Google Scholar 

  38. Doktorova M, Kučerka N, Kinnun JJ, Pan J, Marquardt D, Scott HL, Venable RM, Pastor RW, Wassall SR, Katsaras J, Heberle FA (2020) Molecular structure of sphingomyelin in fluid phase bilayers determined by the joint analysis of small-angle neutron and X-ray scattering data. J Phys Chem B 124(25):5186–5200. https://doi.org/10.1021/acs.jpcb.0c03389

    Article  CAS  Google Scholar 

  39. Nagle JF, Venable RM, Maroclo-Kemmerling E, Tristram-Nagle S, Harper PE, Pastor RW (2019) Revisiting volumes of lipid components in bilayers. J Phys Chem B 123(12):2697–2709. https://doi.org/10.1021/acs.jpcb.8b12010

    Article  CAS  Google Scholar 

  40. Nagle JF, Wilkinson DA (1978) Lecithin bilayers. Density measurement and molecular interactions. Biophys J 23(2):159–175. https://doi.org/10.1016/S00063495(78)854411

    Article  CAS  Google Scholar 

  41. Kučerka N, Nieh MP, Katsaras J (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim Biophys Acta Biomembr 1808(11):2761–2771. https://doi.org/10.1016/j.bbamem.2011.07.022

    Article  Google Scholar 

  42. Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75(2):917–925. https://doi.org/10.1016/S00063495(98)77580-0

  43. Pan J, Marquardt D, Heberle FA, Kučerka N, Katsaras J (2014) Revisiting the bilayer structures of fluid phase phosphatidylglycerol lipids: accounting for exchangeable hydrogens. BBA Biomembr 1838(11):2966–2969. https://doi.org/10.1016/j.bbamem.2014.08.009

  44. Marquardt D, Heberle FA, Pan J, Cheng X, Pabst G, Harroun TA, Kučerka N, Katsaras J (2020) The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data. Chem Phys Lipid 229(January):104892. https://doi.org/10.1016/j.chemphyslip.2020.104892

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew Marquardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

DiPasquale, M., Nguyen, M.H. ., Castillo, S.R., Heberle, F.A., Marquardt, D. (2022). Identifying Membrane Lateral Organization by Contrast-Matched Small Angle Neutron Scattering. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics