Skip to main content

Employing Novel Porcine Models of Subcutaneous Pancreatic Cancer to Evaluate Oncological Therapies

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Abstract

Immunocompromised mice are commonly utilized to study pancreatic cancer and other malignancies. The ability to xenograft tumors in either subcutaneous or orthotopic locations provides a robust model to study diverse biological features of human malignancies. However, there is a dire need for large animal models that better recapitulate human anatomy in terms of size and physiology. These models will be critical for biomedical device development, surgical optimization, and drug discovery. Here, we describe the generation and application of immunocompromised pigs lacking RAG2 and IL2RG as a novel model for human xenograft studies. These SCID-like pigs closely resemble NOD scid gamma mice and are receptive to human tumor tissue, cell lines, and organoid xenografts. However, due to their immunocompromised nature, these immunocompromised animals require housing and maintenance under germfree conditions. In this protocol, we describe the use of these pigs in a subcutaneous tumor injection study with human PANC1 cells. The tumors demonstrate a steady, linear growth curve, reaching 1.0 cm within 30 days post injection. The model described here is focused on subcutaneous injections behind the ear. However, it is readily adaptable for other locations and additional human cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aier I, Semwal R, Sharma A, Varadwaj PK (2019) A systematic assessment of statistics, risk factors, and underlying features involved in pancreatic cancer. Cancer Epidemiol 58:104–110

    Article  PubMed  Google Scholar 

  2. Ghaneh P, Costello E, Neoptolemos JP (2007) Biology and management of pancreatic cancer. Gut 56(8):1134–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hr B, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Christine Cripps M, Portenoy RK, Storniolo AM, Tarassoff P (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413

    Article  Google Scholar 

  4. Davalos RV, Mir L, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33(2):223

    Article  CAS  PubMed  Google Scholar 

  5. Ivey JW, Latouche EL, Sano MB, Rossmeisl JH, Davalos RV, Verbridge SS (2015) Targeted cellular ablation based on the morphology of malignant cells. Sci Rep 5:17157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ivey J, Wasson E, Alinezhadbalalami N, Kanitkar A, Debinski W, Sheng Z, Davalos R, Verbridge S (2019) Characterization of ablation thresholds for 3D-cultured patient-derived glioma stem cells in response to high-frequency irreversible electroporation. Research 2019:8081315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin RC, McFarland K, Ellis S, Velanovich V (2013) Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann Surg Oncol 20(3):443–449

    Article  Google Scholar 

  8. Martin RC, Kwon D, Chalikonda S, Sellers M, Kotz E, Scoggins C, McMasters KM, Watkins K (2015) Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann Surg 262(3):486–494

    Article  PubMed  Google Scholar 

  9. Bower M, Sherwood L, Li Y, Martin R (2011) Irreversible electroporation of the pancreas: definitive local therapy without systemic effects. J Surg Oncol 104(1):22–28

    Article  PubMed  Google Scholar 

  10. Martin RC II, McFarland K, Ellis S, Velanovich V (2012) Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg 215(3):361–369

    Article  PubMed  Google Scholar 

  11. Martin RC (2013) Irreversible electroporation of locally advanced pancreatic head adenocarcinoma. J Gastrointest Surg 17(10):1850–1856

    Article  PubMed  Google Scholar 

  12. Saccomandi P, Lapergola A, Longo F, Schena E, Quero G (2018) Thermal ablation of pancreatic cancer: a systematic literature review of clinical practice and pre-clinical studies. Int J Hyperth 35(1):398–418

    Article  Google Scholar 

  13. Hwang JH, Wang Y-N, Warren C, Upton MP, Starr F, Zhou Y, Mitchell SB (2009) Preclinical in vivo evaluation of an extracorporeal HIFU device for ablation of pancreatic tumors. Ultrasound Med Biol 35(6):967–975

    Article  PubMed  Google Scholar 

  14. Bader KB, Vlaisavljevich E, Maxwell AD (2019) For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. Ultrasound Med Biol 45(5):1056–1080

    Article  PubMed  PubMed Central  Google Scholar 

  15. Longo KC, Knott EA, Watson RF, Swietlik JF, Vlaisavljevich E, Smolock AR, Xu Z, Cho CS, Mao L, Lee FT Jr, Ziemlewicz TJ (2019) Robotically assisted sonic therapy (RAST) for noninvasive hepatic ablation in a porcine model: mitigation of Body Wall damage with a modified pulse sequence. Cardiovasc Intervent Radiol 42(7):1016–1023. https://doi.org/10.1007/s00270-019-02215-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vlaisavljevich E, Owens G, Lundt J, Teofilovic D, Ives K, Duryea A, Bertolina J, Welling TH, Xu Z (2017) Non-invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model. Ultrasound Med Biol 43(6):1237–1251

    Article  PubMed  Google Scholar 

  17. Vlaisavljevich E, Kim Y, Allen S, Owens G, Pelletier S, Cain C, Ives K, Xu Z (2013) Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol 39(8):1398–1409

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wagner M, Greten FR, Weber CK, Koschnick S, Mattfeldt T, Deppert W, Kern H, Adler G, Schmid RM (2001) A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev 15(3):286–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76

    Article  PubMed  PubMed Central  Google Scholar 

  20. Segatto NV, Remião MH, Schachtschneider KM, Seixas FK, Schook LB, Collares T (2017) The oncopig cancer model as a complementary tool for phenotypic drug discovery. Front Pharmacol 8:894

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maher B (2013) Tissue engineering: how to build a heart. Nature 499(7456):20

    Article  CAS  PubMed  Google Scholar 

  22. Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui X, Kurome M, Zakhartchenko V, Kessler B, Wieland H (2012) A porcine model of familial adenomatous polyposis. Gastroenterology 143(5):1173–1175.e7

    Article  CAS  PubMed  Google Scholar 

  23. Sieren JC, Meyerholz DK, Wang X-J, Davis BT, Newell JD, Hammond E, Rohret JA, Rohret FA, Struzynski JT, Goeken JA (2014) Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest 124(9):4052–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, Grippo P, Principe DR, Park A, Overgaard NH, Jungersen G, Garcia KD, Maker AV, Rund LA, Ozer H, Gaba RC, Schook LB (2017) The oncopig cancer model: an innovative large animal translational oncology platform. Front Oncol 7:190. https://doi.org/10.3389/fonc.2017.00190

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee K, Kwon D-N, Ezashi T, Choi Y-J, Park C, Ericsson AC, Brown AN, Samuel MS, Park K-W, Walters EM (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci 111(20):7260–7265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Basel MT, Balivada S, Beck AP, Kerrigan MA, Pyle MM, Dekkers JC, Wyatt CR, Rowland RR, Anderson DE, Bossmann SH (2012) Human xenografts are not rejected in a naturally occurring immunodeficient porcine line: a human tumor model in pigs. Biores Open Access 1(2):63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lei S, Ryu J, Wen K, Twitchell E, Bui T, Ramesh A, Weiss M, Li G, Samuel H, Clark-Deener S (2016) Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep 6:25222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang JT, Cho B, Ryu J, Ray C, Lee EJ, Yun YJ, Ahn S, Lee J, Ji DY, Jue N, Clark-Deener S, Lee K, Park KW (2016) Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14(1):74. https://doi.org/10.1186/s12958-016-0206-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uh K, Lee K (2017) Use of chemicals to inhibit DNA replication, transcription, and protein synthesis to study zygotic genome activation. In: Zygotic genome activation. Springer, pp 191–205

    Chapter  Google Scholar 

  30. Yoshioka K, Suzuki C, Tanaka A, Anas IM-K, Iwamura S (2002) Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66(1):112–119

    Article  CAS  PubMed  Google Scholar 

  31. Yuan L, Jobst PM, Weiss M (2017) Gnotobiotic pigs: from establishing facility to modeling human infectious diseases. In: Gnotobiotics. Elsevier, pp 349–368

    Chapter  Google Scholar 

  32. Ryu J, Lee K (2017) CRISPR/Cas9-mediated gene targeting during embryogenesis in swine. In: Zygotic genome activation. Springer, pp 231–244

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irving C. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hendricks-Wenger, A., Nagai-Singer, M.A., Uh, K., Vlaisavljevich, E., Lee, K., Allen, I.C. (2022). Employing Novel Porcine Models of Subcutaneous Pancreatic Cancer to Evaluate Oncological Therapies. In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_47

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics