Skip to main content

Imaging Cytoskeleton Components by Electron Microscopy

  • Protocol
  • First Online:
Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2364))

Abstract

The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.

This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical “unroofing”) of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wohlfarth-Bottermann KE (1962) Weitreichende fibrillare Protoplasmadifferenzierungen und ihre Bedeutung fur die Protoplasmastromung. I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54:514–539

    Article  Google Scholar 

  2. Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19(1):239–250

    Article  CAS  Google Scholar 

  3. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  CAS  Google Scholar 

  4. Abercrombie M, Heaysman JE, Pegrum SM (1971) The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 67(2):359–367

    Article  CAS  Google Scholar 

  5. Wohlfarth-Bottermann KE (1964) Differentiations of the ground cytoplasm and their significance for the generation of the motive force of ameboid movement. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic, pp 79–109

    Chapter  Google Scholar 

  6. Kukulski W, Schorb M, Kaksonen M, Briggs JA (2012) Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150(3):508–520. https://doi.org/10.1016/j.cell.2012.05.046

    Article  CAS  PubMed  Google Scholar 

  7. Luduena MA, Wessells NK (1973) Cell locomotion, nerve elongation, and microfilaments. Dev Biol 30(2):427–440

    Article  CAS  Google Scholar 

  8. Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86(1):244–259

    Article  CAS  Google Scholar 

  9. Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X, De Camilli P (2010) Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat Cell Biol 12(9):902–908

    Article  CAS  Google Scholar 

  10. Small JV, Isenberg G, Celis JE (1978) Polarity of actin at the leading edge of cultured cells. Nature 272(5654):638–639

    Article  CAS  Google Scholar 

  11. Damiano-Guercio J, Kurzawa L, Mueller J, Dimchev G, Schaks M, Nemethova M, Pokrant T, Bruhmann S, Linkner J, Blanchoin L, Sixt M, Rottner K, Faix J (2020) Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. elife 9:e55351. https://doi.org/10.7554/eLife.55351

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mueller J, Szep G, Nemethova M, de Vries I, Lieber AD, Winkler C, Kruse K, Small JV, Schmeiser C, Keren K, Hauschild R, Sixt M (2017) Load adaptation of lamellipodial actin networks. Cell 171(1):188–200.e116. https://doi.org/10.1016/j.cell.2017.07.051

    Article  CAS  PubMed  Google Scholar 

  13. Sturner T, Tatarnikova A, Mueller J, Schaffran B, Cuntz H, Zhang Y, Nemethova M, Bogdan S, Small V, Tavosanis G (2019) Transient localization of the Arp2/3 complex initiates neuronal dendrite branching in vivo. Development 146(7):dev171397. https://doi.org/10.1242/dev.171397

    Article  CAS  PubMed  Google Scholar 

  14. Chakraborty S, Jasnin M, Baumeister W (2020) Three-dimensional organization of the cytoskeleton: a cryo-electron tomography perspective. Protein Sci 29(6):1302–1320. https://doi.org/10.1002/pro.3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kopek BG, Paez-Segala MG, Shtengel G, Sochacki KA, Sun MG, Wang Y, Xu CS, van Engelenburg SB, Taraska JW, Looger LL, Hess HF (2017) Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat Protoc 12(5):916–946. https://doi.org/10.1038/nprot.2017.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murata K, Wolf M (2018) Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim Biophys Acta 1862(2):324–334. https://doi.org/10.1016/j.bbagen.2017.07.020

    Article  CAS  Google Scholar 

  17. Stark H, Chari A (2016) Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy 65(1):23–34. https://doi.org/10.1093/jmicro/dfv367

    Article  CAS  PubMed  Google Scholar 

  18. Lucic V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202(3):407–419. https://doi.org/10.1083/jcb.201304193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engel BD, Schaffer M, Albert S, Asano S, Plitzko JM, Baumeister W (2015) In situ structural analysis of Golgi intracisternal protein arrays. Proc Natl Acad Sci U S A 112(36):11264–11269. https://doi.org/10.1073/pnas.1515337112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fischer TD, Dash PK, Liu J, Waxham MN (2018) Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography. PLoS Biol 16(9):e2006169. https://doi.org/10.1371/journal.pbio.2006169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang CL, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF (2020) Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367(6475):eaaz5357. https://doi.org/10.1126/science.aaz5357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hurley JH, Nogales E (2016) Next-generation electron microscopy in autophagy research. Curr Opin Struct Biol 41:211–216. https://doi.org/10.1016/j.sbi.2016.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jorgens DM, Inman JL, Wojcik M, Robertson C, Palsdottir H, Tsai WT, Huang H, Bruni-Cardoso A, Lopez CS, Bissell MJ, Xu K, Auer M (2017) Deep nuclear invaginations are linked to cytoskeletal filaments—integrated bioimaging of epithelial cells in 3D culture. J Cell Sci 130(1):177–189. https://doi.org/10.1242/jcs.190967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Cuellar LK, Forster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276):969–972. https://doi.org/10.1126/science.aad8857

    Article  CAS  PubMed  Google Scholar 

  25. Chakraborty S, Mahamid J, Baumeister W (2020) Cryoelectron tomography reveals nanoscale organization of the cytoskeleton and its relation to microtubule curvature inside cells. Structure 28(9):991–1003.e1004. https://doi.org/10.1016/j.str.2020.05.013

    Article  CAS  PubMed  Google Scholar 

  26. Grange M, Vasishtan D, Grunewald K (2016) Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. J Struct Biol 197(2):181–190. https://doi.org/10.1016/j.jsb.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  27. Paul DM, Mantell J, Borucu U, Coombs J, Surridge KJ, Squire JM, Verkade P, Dodding MP (2020) In situ cryo-electron tomography reveals filamentous actin within the microtubule lumen. J Cell Biol 219(9):e201911154. https://doi.org/10.1083/jcb.201911154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson KL, Page C, Swift MF, Suraneni P, Janssen ME, Pollard TD, Li R, Volkmann N, Hanein D (2017) Nano-scale actin-network characterization of fibroblast cells lacking functional Arp2/3 complex. J Struct Biol 197(3):312–321. https://doi.org/10.1016/j.jsb.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  29. Marston DJ, Anderson KL, Swift MF, Rougie M, Page C, Hahn KM, Volkmann N, Hanein D (2019) High Rac1 activity is functionally translated into cytosolic structures with unique nanoscale cytoskeletal architecture. Proc Natl Acad Sci U S A 116(4):1267–1272. https://doi.org/10.1073/pnas.1808830116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jasnin M, Crevenna AH (2016) Quantitative analysis of filament branch orientation in Listeria actin comet tails. Biophys J 110(4):817–826. https://doi.org/10.1016/j.bpj.2015.07.053

    Article  CAS  PubMed  Google Scholar 

  31. Jasnin M, Beck F, Ecke M, Fukuda Y, Martinez-Sanchez A, Baumeister W, Gerisch G (2019) The architecture of traveling actin waves revealed by cryo-electron tomography. Structure 27(8):1211–1223.e1215. https://doi.org/10.1016/j.str.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  32. Heuser J (1981) Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol 22:97–122

    Article  CAS  Google Scholar 

  33. Svitkina TM (2017) Platinum replica electron microscopy: imaging the cytoskeleton globally and locally. Int J Biochem Cell Biol 86:37–41. https://doi.org/10.1016/j.biocel.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Cell Biol 3(1):45–60

    Article  CAS  Google Scholar 

  35. Friend JE, Sayyad WA, Arasada R, McCormick CD, Heuser JE, Pollard TD (2018) Fission yeast Myo2: molecular organization and diffusion in the cytoplasm. Cytoskeleton (Hoboken) 75(4):164–173. https://doi.org/10.1002/cm.21425

    Article  CAS  Google Scholar 

  36. Heuser J (1989) Protocol for 3-D visualization of molecules on mica via the quick-freeze, deep-etch technique. J Electron Microsc Tech 13(3):244–263

    Article  CAS  Google Scholar 

  37. Loesser KE, Franzini-Armstrong C (1990) A simple method for freeze-drying of macromolecules and macromolecular complexes. J Struct Biol 103(1):48–56

    Article  CAS  Google Scholar 

  38. Chikina AS, Svitkina TM, Alexandrova AY (2019) Time-resolved ultrastructure of the cortical actin cytoskeleton in dynamic membrane blebs. J Cell Biol 218(2):445–454. https://doi.org/10.1083/jcb.201806075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Efimova N, Svitkina TM (2018) Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion. J Cell Biol 217(5):1827–1845. https://doi.org/10.1083/jcb.201708103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henson JH, Ditzler CE, Germain A, Irwin PM, Vogt ET, Yang S, Wu X, Shuster CB (2017) The ultrastructural organization of actin and myosin II filaments in the contractile ring: new support for an old model of cytokinesis. Mol Biol Cell 28(5):613–623. https://doi.org/10.1091/mbc.E16-06-0466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heuser JE, Kirschner MW (1980) Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol 86(1):212–234

    Article  CAS  Google Scholar 

  42. Ong K, Svitkina T, Bi E (2016) Visualization of in vivo septin ultrastructures by platinum replica electron microscopy. Methods Cell Biol 136:73–97. https://doi.org/10.1016/bs.mcb.2016.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott BL, Sochacki KA, Low-Nam ST, Bailey EM, Luu Q, Hor A, Dickey AM, Smith S, Kerkvliet JG, Taraska JW, Hoppe AD (2018) Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat Commun 9(1):419. https://doi.org/10.1038/s41467-018-02818-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sochacki KA, Shtengel G, van Engelenburg SB, Hess HF, Taraska JW (2014) Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods 11(3):305–308. https://doi.org/10.1038/nmeth.2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Svitkina TM, Shevelev AA, Bershadsky AD, Gelfand VI (1984) Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas. Eur J Cell Biol 34(1):64–74

    CAS  PubMed  Google Scholar 

  46. Svitkina TM, Verkhovsky AB, Borisy GG (1995) Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol 115(3):290–303

    Article  CAS  Google Scholar 

  47. Vassilopoulos S, Gibaud S, Jimenez A, Caillol G, Leterrier C (2019) Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nat Commun 10(1):5803. https://doi.org/10.1038/s41467-019-13835-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang C, Svitkina TM (2019) Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission. Nat Cell Biol 21(5):603–613. https://doi.org/10.1038/s41556-019-0313-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hirokawa N (1989) Quick-freeze, deep-etch electron microscopy. J Electron Microsc (Tokyo) 38 Suppl:S123–S128

    Google Scholar 

  50. Meyer HW, Richter W (2001) Freeze-fracture studies on lipids and membranes. Micron 32(6):615–644

    Article  CAS  Google Scholar 

  51. Suleiman H, Zhang L, Roth R, Heuser JE, Miner JH, Shaw AS, Dani A (2013) Nanoscale protein architecture of the kidney glomerular basement membrane. elife 2:e01149. https://doi.org/10.7554/eLife.01149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Small JV (1981) Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol 91(3 Pt 1):695–705

    Article  CAS  Google Scholar 

  53. Svitkina TM, Borisy GG (1998) Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods Enzymol 298:570–592. https://doi.org/10.1016/S0076-6879(98)98045-4

    Article  CAS  PubMed  Google Scholar 

  54. Svitkina T (2007) Electron microscopic analysis of the leading edge in migrating cells. Methods Cell Biol 79:295–319. https://doi.org/10.1016/S0091-679X(06)79012-4

    Article  CAS  PubMed  Google Scholar 

  55. Collins A, Warrington A, Taylor KA, Svitkina T (2011) Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol 21(14):1167–1175. https://doi.org/10.1016/j.cub.2011.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heuser J (2000) The production of ‘cell cortices’ for light and electron microscopy. Traffic 1(7):545–552

    Article  CAS  Google Scholar 

  57. Morone N, Usukura E, Narita A, Usukura J (2020) Improved unroofing protocols for cryo-electron microscopy, atomic force microscopy and freeze-etching electron microscopy and the associated mechanisms. Microscopy (Oxf) 69(6):350–359. https://doi.org/10.1093/jmicro/dfaa028

    Article  CAS  Google Scholar 

  58. Brands R, Feltkamp CA (1988) Wet cleaving of cells: a method to introduce macromolecules into the cytoplasm. Application for immunolocalization of cytosol-exposed antigens. Exp Cell Res 176(2):309–318

    Article  CAS  Google Scholar 

  59. Massaad MJ, Oyoshi MK, Kane J, Koduru S, Alcaide P, Nakamura F, Ramesh N, Luscinskas FW, Hartwig J, Geha RS (2014) Binding of WIP to actin is essential for T Cell actin cytoskeleton integrity and tissue homing. Mol Cell Biol 34(23):4343–4354. https://doi.org/10.1128/MCB.00533-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peitsch CF, Beckmann S, Zuber B (2016) iMEM: isolation of plasma membrane for cryoelectron microscopy. Structure 24(12):2198–2206. https://doi.org/10.1016/j.str.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  61. Sato F, Asakawa H, Fukuma T, Terada S (2016) Semi-in situ atomic force microscopy imaging of intracellular neurofilaments under physiological conditions through the ‘sandwich’ method. Microscopy 65(4):316–324. https://doi.org/10.1093/jmicro/dfw006

    Article  CAS  PubMed  Google Scholar 

  62. Shutova MS, Spessott WA, Giraudo CG, Svitkina T (2014) Endogenous species of mammalian nonmuscle myosin IIA and IIB include activated monomers and heteropolymers. Curr Biol 24(17):1958–1968. https://doi.org/10.1016/j.cub.2014.07.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Svitkina TM, Verkhovsky AB, Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135(4):991–1007

    Article  CAS  Google Scholar 

  64. Verkhovsky AB, Borisy GG (1993) Non-sarcomeric mode of myosin II organization in the fibroblast lamellum. J Cell Biol 123(3):637–652

    Article  CAS  Google Scholar 

  65. Verkhovsky AB, Svitkina TM, Borisy GG (1995) Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J Cell Biol 131(4):989–1002

    Article  CAS  Google Scholar 

  66. Svitkina TM, Borisy GG (2006) Correlative light and electron microscopy studies of cytoskeletal dynamics. In: Celis J (ed) Cell biology: a laboratory handbook, vol 3. vol 28, 3rd edn. Elsevier, pp 277–285

    Chapter  Google Scholar 

  67. Efimova N, Yang C, Chia JX, Li N, Lengner CJ, Neufeld KL, Svitkina TM (2020) Branched actin networks are assembled on microtubules by adenomatous polyposis coli for targeted membrane protrusion. J Cell Biol 219(9):e202003091. https://doi.org/10.1083/jcb.202003091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Efimova N, Korobova F, Stankewich MC, Moberly AH, Stolz DB, Wang J, Kashina A, Ma M, Svitkina T (2017) BetaIII spectrin is necessary for formation of the constricted neck of dendritic spines and regulation of synaptic activity in neurons. J Neurosci 37(27):6442–6459. https://doi.org/10.1523/JNEUROSCI.3520-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ripoll L, Heiligenstein X, Hurbain I, Domingues L, Figon F, Petersen KJ, Dennis MK, Houdusse A, Marks MS, Raposo G, Delevoye C (2018) Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers. J Cell Biol 217(8):2709–2726. https://doi.org/10.1083/jcb.201709055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sochacki KA, Dickey AM, Strub MP, Taraska JW (2017) Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 19(4):352–361. https://doi.org/10.1038/ncb3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Avinoam O, Schorb M, Beese CJ, Briggs JA, Kaksonen M (2015) Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348(6241):1369–1372. https://doi.org/10.1126/science.aaa9555

    Article  CAS  PubMed  Google Scholar 

  72. Harterink M, Vocking K, Pan X, Soriano Jerez EM, Slenders L, Freal A, Tas RP, van de Wetering WJ, Timmer K, Motshagen J, van Beuningen SFB, Kapitein LC, Geerts WJC, Post JA, Hoogenraad CC (2019) TRIM46 organizes microtubule fasciculation in the axon initial segment. J Neurosci 39(25):4864–4873. https://doi.org/10.1523/JNEUROSCI.3105-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kukulski W, Picco A, Specht T, Briggs JA, Kaksonen M (2016) Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. elife 5:e16036. https://doi.org/10.7554/eLife.16036

    Article  PubMed  PubMed Central  Google Scholar 

  74. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9(1):1228. https://doi.org/10.1038/s41467-018-03566-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wesolowska N, Avilov I, Machado P, Geiss C, Kondo H, Mori M, Lenart P (2020) Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. elife 9:e49774. https://doi.org/10.7554/eLife.49774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nemethova M, Auinger S, Small JV (2008) Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J Cell Biol 180(6):1233–1244

    Article  CAS  Google Scholar 

  77. Shutova M, Yang C, Vasiliev JM, Svitkina T (2012) Functions of nonmuscle myosin II in assembly of the cellular contractile system. PLoS One 7(7):e40814. https://doi.org/10.1371/journal.pone.0040814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verkhovsky AB, Surgucheva IG, Svitkina TM, Tint IS, Gelfand VI (1987) Organization of stress fibers in cultured fibroblasts after extraction of actin with bovine brain gelsolin-like protein. Exp Cell Res 173(1):244–255

    Article  CAS  Google Scholar 

  79. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421

    Article  CAS  Google Scholar 

  80. Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T (2007) Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 5(11):e317

    Article  Google Scholar 

  81. Simionescu N, Simionescu M (1976) Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol 70(3):608–621

    Article  CAS  Google Scholar 

  82. Maupin P, Pollard TD (1983) Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol 96(1):51–62

    Article  CAS  Google Scholar 

  83. Bishai EA, Sidhu GS, Li W, Dhillon J, Bohil AB, Cheney RE, Hartwig JH, Southwick FS (2013) Myosin-X facilitates Shigella-induced membrane protrusions and cell-to-cell spread. Cell Microbiol 15(3):353–367. https://doi.org/10.1111/cmi.12051

    Article  CAS  PubMed  Google Scholar 

  84. Bridgman PC, Dailey ME (1989) The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol 108(1):95–109

    Article  CAS  Google Scholar 

  85. Hartwig JH, Shevlin P (1986) The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J Cell Biol 103(3):1007–1020

    Article  CAS  Google Scholar 

  86. Weng L, Enomoto A, Miyoshi H, Takahashi K, Asai N, Morone N, Jiang P, An J, Kato T, Kuroda K, Watanabe T, Asai M, Ishida-Takagishi M, Murakumo Y, Nakashima H, Kaibuchi K, Takahashi M (2014) Regulation of cargo-selective endocytosis by dynamin 2 GTPase-activating protein girdin. EMBO J 33(18):2098–2112. https://doi.org/10.15252/embj.201488289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE, Griffith JD, Gomez SM, Bear JE (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148(5):973–987. https://doi.org/10.1016/j.cell.2011.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elkhatib N, Bresteau E, Baschieri F, Rioja AL, van Niel G, Vassilopoulos S, Montagnac G (2017) Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356(6343):aal4713. https://doi.org/10.1126/science.aal4713

    Article  CAS  Google Scholar 

  89. Ferrari R, Martin G, Tagit O, Guichard A, Cambi A, Voituriez R, Vassilopoulos S, Chavrier P (2019) MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat Commun 10(1):4886. https://doi.org/10.1038/s41467-019-12930-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franck A, Laine J, Moulay G, Lemerle E, Trichet M, Gentil C, Benkhelifa-Ziyyat S, Lacene E, Bui MT, Brochier G, Guicheney P, Romero N, Bitoun M, Vassilopoulos S (2019) Clathrin plaques and associated actin anchor intermediate filaments in skeletal muscle. Mol Biol Cell 30(5):579–590. https://doi.org/10.1091/mbc.E18-11-0718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Braet F, De Zanger R, Wisse E (1997) Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc 186(Pt 1):84–87. https://doi.org/10.1046/j.1365-2818.1997.1940755.x

    Article  CAS  PubMed  Google Scholar 

  92. Bray DF, Bagu J, Koegler P (1993) Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc Res Tech 26(6):489–495. https://doi.org/10.1002/jemt.1070260603

    Article  CAS  PubMed  Google Scholar 

  93. Sokolova AI, Pavlova ER, Khramova YV, Klinov DV, Shaitan KV, Bagrov DV (2019) Imaging human keratinocytes grown on electrospun mats by scanning electron microscopy. Microsc Res Tech 82(5):544–549. https://doi.org/10.1002/jemt.23198

    Article  CAS  PubMed  Google Scholar 

  94. Kwiatkowski DJ, Janmey PA, Yin HL (1989) Identification of critical functional and regulatory domains in gelsolin. J Cell Biol 108(5):1717–1726

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the current support from NIH grant R01 GM 095977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Svitkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Svitkina, T. (2022). Imaging Cytoskeleton Components by Electron Microscopy. In: Gavin, R.H. (eds) Cytoskeleton . Methods in Molecular Biology, vol 2364. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1661-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1661-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1660-4

  • Online ISBN: 978-1-0716-1661-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics