Skip to main content

Quantification of Mitochondrial RNA Editing Efficiency Using Sanger Sequencing Data

  • Protocol
  • First Online:
Plant Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2363))

Abstract

C-to-U RNA editing in mitochondria and plastids is widespread in almost all terrestrial plants, where it mainly changes codons to encode conserved amino acids in organelle mRNAs. In flowering plants, the number of RNA editing sites reaches 400–600 in mitochondria and about 40 in plastids, respectively. To date, more than 100 factors involved in RNA editing have been identified. Since target cytidines of each factor are often distributed across multiple transcripts, comprehensive monitoring of all RNA editing sites is necessary for their characterization. Comparing the signals of C and T in the Sanger sequencing chromatogram of RT-PCR products is the most frequently employed method for quantification of RNA editing efficiency, although several methods based on next-generation sequencing have been developed. I here describe a quick and easy method for quantification of RNA editing efficiency at several hundred sites using the Sanger sequencing chromatogram data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352

    Article  CAS  Google Scholar 

  2. Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O (2020) Plant organellar RNA editing: what 30 years of research has revealed. Plant J 101:1040–1056

    Article  CAS  Google Scholar 

  3. Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF, Bai F, Castleden I, Song Y, Song B, Huang J, Liu X, Xu X, Lim BL, Bond CS, Yiu S-M, Small I (2016) Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J 85:532–547

    Article  CAS  Google Scholar 

  4. Takenaka M, Jörg A, Burger M, Haag S (2019) RNA editing mutants as surrogates for mitochondrial SNP mutants. Plant Physiol Biochem 135:310–321

    Article  CAS  Google Scholar 

  5. Hayes ML, Santibanez PI (2020) A plant pentatricopeptide repeat protein with a DYW-deaminase domain is sufficient for catalyzing C-to-U RNA editing in vitro. J Biol Chem 295:3497–3505

    Article  CAS  Google Scholar 

  6. Oldenkott B, Yang Y, Lesch E, Knoop V, Schallenberg-Rüdinger M (2019) Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli. Commun Biol 2:85

    Article  Google Scholar 

  7. Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910

    Article  CAS  Google Scholar 

  8. Takenaka M, Zehrmann A, Brennicke A, Graichen K (2013) Improved computational target site prediction for Pentatricopeptide repeat RNA editing factors. PLoS One 8:e65343

    Article  CAS  Google Scholar 

  9. Yagi Y, Hayashi S, Kobayashi K, Hirayama T, Nakamura T (2013) Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS One 8:e57286

    Article  CAS  Google Scholar 

  10. Andrés-Colás N, Zhu Q, Takenaka M, De Rybel B, Weijers D, Van Der Straeten D (2017) Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids. Proc Natl Acad Sci U S A 114:8883–8888

    Article  Google Scholar 

  11. Bentolila S, Heller WP, Sun T, Babina AM, Friso G, van Wijk KJ, Hanson MR (2012) RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci U S A 109:E1453–E1461

    Google Scholar 

  12. Guillaumot D, Lopez-Obando M, Baudry K, Avon A, Rigaill G, Falcon de Longevialle A, Broche B, Takenaka M, Berthomé R, De Jaeger G, Delannoy E, Lurin C (2017) Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proc Natl Acad Sci U S A 114:8877–8882

    Article  CAS  Google Scholar 

  13. Shi X, Germain A, Hanson MR, Bentolila S (2016) RNA recognition motif-containing protein ORRM4 broadly affects mitochondrial RNA editing and impacts plant development and flowering. Plant Physiol 170:294–309

    Article  CAS  Google Scholar 

  14. Sun T, Shi X, Friso G, Van Wijk K, Bentolila S, Hanson MR (2015) A zinc finger motif-containing protein is essential for chloroplast RNA editing. PLoS Genet 11:e1005028

    Article  Google Scholar 

  15. Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A (2012) Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci U S A 109:5104–5109

    Google Scholar 

  16. Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an arabidopsis gene family in RNA editing. PLoS Genet 9:e1003584

    Article  CAS  Google Scholar 

  17. Brehme N, Bayer-Császár E, Glass F, Takenaka M (2015) The DYW subgroup PPR protein MEF35 targets RNA editing sites in the mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana. PLoS One 10:e0140680

    Article  Google Scholar 

  18. Liu R, Cao S-K, Sayyed A, Yang H-H, Zhao J, Wang X, Jia R-X, Sun F, Tan B-C (2020) The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. J Exp Bot 71:5495–5505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the JSPS Grants-in-Aid for Scientific Research [18H02462] to M.T. I am grateful to Brody Frink and Ayako Maeda for critical reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuki Takenaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takenaka, M. (2022). Quantification of Mitochondrial RNA Editing Efficiency Using Sanger Sequencing Data. In: Van Aken, O., Rasmusson, A.G. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 2363. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1653-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1653-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1652-9

  • Online ISBN: 978-1-0716-1653-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics