Skip to main content

Direct In Vitro Reprogramming of Astrocytes into Induced Neurons

  • Protocol
  • First Online:
Neural Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2352))

Abstract

Spontaneous neuronal replacement is almost absent in the postnatal mammalian nervous system. However, several studies have shown that both early postnatal and adult astroglia can be reprogrammed in vitro or in vivo by forced expression of proneural transcription factors, such as Neurogenin-2 or Achaete-scute homolog 1 (Ascl1), to acquire a neuronal fate. The reprogramming process stably induces properties such as distinctly neuronal morphology, expression of neuron-specific proteins, and the gain of mature neuronal functional features. Direct conversion of astroglia into neurons thus possesses potential as a basis for cell-based strategies against neurological diseases. In this chapter, we describe a well-established protocol used for direct reprogramming of postnatal cortical astrocytes into functional neurons in vitro and discuss available tools and approaches to dissect molecular and cell biological mechanisms underlying the reprogramming process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM R 2(12 Suppl 2):S208–S219. https://doi.org/10.1016/j.pmrj.2010.10.016

    Article  PubMed  Google Scholar 

  2. Grade S, Gotz M (2017) Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2:29. https://doi.org/10.1038/s41536-017-0033-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barker RA, Gotz M, Parmar M (2018) New approaches for brain repair-from rescue to reprogramming. Nature 557(7705):329–334. https://doi.org/10.1038/s41586-018-0087-1

    Article  CAS  PubMed  Google Scholar 

  4. Gascon S, Masserdotti G, Russo GL, Gotz M (2017) Direct neuronal reprogramming: achievements, hurdles, and new roads to success. Cell Stem Cell 21(1):18–34. https://doi.org/10.1016/j.stem.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  5. Vignoles R, Lentini C, d’Orange M, Heinrich C (2019) Direct lineage reprogramming for brain repair: breakthroughs and challenges. Trends Mol Med 25(10):897–914. https://doi.org/10.1016/j.molmed.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27(32):8654–8664. https://doi.org/10.1523/JNEUROSCI.1615-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blum R, Heinrich C, Sanchez R, Lepier A, Gundelfinger ED, Berninger B, Gotz M (2011) Neuronal network formation from reprogrammed early postnatal rat cortical glial cells. Cereb Cortex 21(2):413–424. https://doi.org/10.1093/cercor/bhq107

    Article  PubMed  Google Scholar 

  8. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8(5):e1000373. https://doi.org/10.1371/journal.pbio.1000373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattugini N, Bocchi R, Scheuss V, Russo GL, Torper O, Lao CL, Gotz M (2020) Inducing different neuronal subtypes from astrocytes in the injured mouse cerebral cortex. Neuron 103:1086–1095.e1085. https://doi.org/10.1016/j.neuron.2019.08.009

    Article  CAS  Google Scholar 

  10. Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y, Zhou Y, Tang C, Liu F, Wang L, Feng C, Liu M, Li S, Zhang Y, Xu H, Yao H, Shi L, Yang H (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181(3):590–603.e516. https://doi.org/10.1016/j.cell.2020.03.024

    Article  CAS  PubMed  Google Scholar 

  11. Lu YL, Yoo AS (2018) Mechanistic insights into MicroRNA-induced neuronal reprogramming of human adult fibroblasts. Front Neurosci 12:522. https://doi.org/10.3389/fnins.2018.00522

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mahato B, Kaya KD, Fan Y, Sumien N, Shetty RA, Zhang W, Davis D, Mock T, Batabyal S, Ni A, Mohanty S, Han Z, Farjo R, Forster MJ, Swaroop A, Chavala SH (2020) Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 581(7806):83–88. https://doi.org/10.1038/s41586-020-2201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L, Chen L, Jin P, Wu GY, Chen G (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. https://doi.org/10.1016/j.stem.2015.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qian H, Hu J, Zhang D, Meng F, Zhang X, Xue Y, Devaraj NK, Dowdy SF, Mobley WC, Cleveland DW, Fu X-D (2020) Therapeutic reversal of chemically induced parkinson disease by converting astrocytes into nigral neurons. bioRxiv:2020.2004.2006.028084. https://doi.org/10.1101/2020.04.06.028084

  15. Masserdotti G, Gascon S, Gotz M (2016) Direct neuronal reprogramming: learning from and for development. Development 143(14):2494–2510. https://doi.org/10.1242/dev.092163

    Article  CAS  PubMed  Google Scholar 

  16. Luginbühl J, Kouno T, Nakano R, Chater TE, Sivaraman DM, Kishima M, Roudnicky F, Carninci P, Plessy C, Shin JW (2019) Decoding neuronal diversity by single-cell Convert-seq. bioRxiv:600239. https://doi.org/10.1101/600239

  17. Tsunemoto R, Lee S, Szucs A, Chubukov P, Sokolova I, Blanchard JW, Eade KT, Bruggemann J, Wu C, Torkamani A, Sanna PP, Baldwin KK (2018) Diverse reprogramming codes for neuronal identity. Nature 557(7705):375–380. https://doi.org/10.1038/s41586-018-0103-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karow M, Camp JG, Falk S, Gerber T, Pataskar A, Gac-Santel M, Kageyama J, Brazovskaja A, Garding A, Fan W, Riedemann T, Casamassa A, Smiyakin A, Schichor C, Gotz M, Tiwari VK, Treutlein B, Berninger B (2018) Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci 21(7):932–940. https://doi.org/10.1038/s41593-018-0168-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M, Quake SR (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534(7607):391–395. https://doi.org/10.1038/nature18323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aydin B, Kakumanu A, Rossillo M, Moreno-Estelles M, Garipler G, Ringstad N, Flames N, Mahony S, Mazzoni EO (2019) Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat Neurosci 22(6):897–908. https://doi.org/10.1038/s41593-019-0399-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee QY, Mall M, Chanda S, Zhou B, Sharma KS, Schaukowitch K, Adrian-Segarra JM, Grieder SD, Kareta MS, Wapinski OL, Ang CE, Li R, Sudhof TC, Chang HY, Wernig M (2020) Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nat Cell Biol 22(4):401–411. https://doi.org/10.1038/s41556-020-0490-3

    Article  CAS  PubMed  Google Scholar 

  22. Aydin B, Mazzoni EO (2019) Cell reprogramming: the many roads to success. Annu Rev Cell Dev Biol 35:433–452. https://doi.org/10.1146/annurev-cellbio-100818-125127

    Article  CAS  PubMed  Google Scholar 

  23. Mu L, Berti L, Masserdotti G, Covic M, Michaelidis TM, Doberauer K, Merz K, Rehfeld F, Haslinger A, Wegner M, Sock E, Lefebvre V, Couillard-Despres S, Aigner L, Berninger B, Lie DC (2012) SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32(9):3067–3080. https://doi.org/10.1523/JNEUROSCI.4679-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Babos KN, Galloway KE, Kisler K, Zitting M, Li Y, Shi Y, Quintino B, Chow RH, Zlokovic BV, Ichida JK (2019) Mitigating antagonism between transcription and proliferation allows near-deterministic cellular reprogramming. Cell Stem Cell 25(4):486–500.e489. https://doi.org/10.1016/j.stem.2019.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SP, Schroeder T, Beckers J, Irmler M, Berndt C, Angeli JP, Conrad M, Berninger B, Gotz M (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18(3):396–409. https://doi.org/10.1016/j.stem.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  26. Masserdotti G, Gillotin S, Sutor B, Drechsel D, Irmler M, Jorgensen HF, Sass S, Theis FJ, Beckers J, Berninger B, Guillemot F, Gotz M (2015) Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17(1):74–88. https://doi.org/10.1016/j.stem.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herrero-Navarro Á, Puche-Aroca L, Moreno-Juan V, Sempere-Ferràndez A, Espinosa A, Susín R, Torres-Masjoan L, Leyva-Díaz E, Karow M, Figueres-Oñate M, López-Mascaraque L, López-Atalaya JP, Berninger B, López-Bendito G (2020) Astrocytes and neurons share brain region-specific transcriptional signatures. bioRxiv:2020.2004.2021.038737. https://doi.org/10.1101/2020.04.21.038737

  28. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. https://doi.org/10.1146/annurev.neuro.051508.135600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisen J (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346(6206):237–241. https://doi.org/10.1126/science.346.6206.237

    Article  CAS  PubMed  Google Scholar 

  30. Nato G, Caramello A, Trova S, Avataneo V, Rolando C, Taylor V, Buffo A, Peretto P, Luzzati F (2015) Striatal astrocytes produce neuroblasts in an excitotoxic model of Huntington’s disease. Development 142(5):840–845. https://doi.org/10.1242/dev.116657

    Article  CAS  PubMed  Google Scholar 

  31. Farmer WT, Murai K (2017) Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci 11:300. https://doi.org/10.3389/fncel.2017.00300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, Ben Haim L, Young AMH, Batiuk MY, Prakash K, Brown A, Roberts K, Paredes MF, Kawaguchi R, Stockley JH, Sabeur K, Chang SM, Huang E, Hutchinson P, Ullian EM, Hemberg M, Coppola G, Holt MG, Geschwind DH, Rowitch DH (2020) Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 23(4):500–509. https://doi.org/10.1038/s41593-020-0602-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chouchane M, Melo de Farias AR, Moura DMS, Hilscher MM, Schroeder T, Leao RN, Costa MR (2017) Lineage reprogramming of astroglial cells from different origins into distinct neuronal subtypes. Stem Cell Reports 9(1):162–176. https://doi.org/10.1016/j.stemcr.2017.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu MH, Li W, Zheng JJ, Xu YG, He Q, Chen G (2020) Differential neuronal reprogramming induced by NeuroD1 from astrocytes in grey matter versus white matter. Neural Regen Res 15(2):342–351. https://doi.org/10.4103/1673-5374.265185

    Article  PubMed  Google Scholar 

  35. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G, Duncan JA 3rd, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MG, Barres BA (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53. https://doi.org/10.1016/j.neuron.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  36. Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, Monni E, Hansen MG, Hidalgo I, Bryder D, Bengzon J, Ahlenius H (2018) Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat Methods 15(9):693–696. https://doi.org/10.1038/s41592-018-0103-2

    Article  CAS  PubMed  Google Scholar 

  37. Tchieu J, Calder EL, Guttikonda SR, Gutzwiller EM, Aromolaran KA, Steinbeck JA, Goldstein PA, Studer L (2019) NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nat Biotechnol 37(3):267–275. https://doi.org/10.1038/s41587-019-0035-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian X, Song H, Ming GL (2019) Brain organoids: advances, applications and challenges. Development 146(8). https://doi.org/10.1242/dev.166074

  39. Mariani JN, Zou L, Goldman SA (2019) Human glial chimeric mice to define the role of glial pathology in human disease. Methods Mol Biol 1936:311–331. https://doi.org/10.1007/978-1-4939-9072-6_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ory DS, Neugeboren BA, Mulligan RC (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A 93(21):11400–11406. https://doi.org/10.1073/pnas.93.21.11400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morris SA (2019) The evolving concept of cell identity in the single cell era. Development 146(12). https://doi.org/10.1242/dev.169748

  42. Cang Z, Nie Q (2020) Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun 11(1):2084. https://doi.org/10.1038/s41467-020-15968-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lau S, Rylander Ottosson D, Jakobsson J, Parmar M (2014) Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Rep 9(5):1673–1680. https://doi.org/10.1016/j.celrep.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  44. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5):299–311. https://doi.org/10.1038/nrg3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, Lin X, Still C 2nd, Liu H, Zhao D, Wang H, Xie XS, Ding S, Wong WH, Wernig M, Qi LS (2018) CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23(5):758–771.e758. https://doi.org/10.1016/j.stem.2018.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Erhard F, Baptista MAP, Krammer T, Hennig T, Lange M, Arampatzi P, Jurges CS, Theis FJ, Saliba AE, Dolken L (2019) scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 571(7765):419–423. https://doi.org/10.1038/s41586-019-1369-y

    Article  CAS  PubMed  Google Scholar 

  47. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lonnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundstrom E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV (2018) RNA velocity of single cells. Nature 560(7719):494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cammack AJ, Moudgil A, Chen J, Vasek MJ, Shabsovich M, McCullough K, Yen A, Lagunas T, Maloney SE, He J, Chen X, Hooda M, Wilkinson MN, Miller TM, Mitra RD, Dougherty JD (2020) A viral toolkit for recording transcription factor-DNA interactions in live mouse tissues. Proc Natl Acad Sci U S A 117(18):10003–10014. https://doi.org/10.1073/pnas.1918241117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costa MR, Ortega F, Brill MS, Beckervordersandforth R, Petrone C, Schroeder T, Gotz M, Berninger B (2011) Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development 138(6):1057–1068. https://doi.org/10.1242/dev.061663

    Article  CAS  PubMed  Google Scholar 

  50. Hilsenbeck O, Schwarzfischer M, Skylaki S, Schauberger B, Hoppe PS, Loeffler D, Kokkaliaris KD, Hastreiter S, Skylaki E, Filipczyk A, Strasser M, Buggenthin F, Feigelman JS, Krumsiek J, van den Berg AJ, Endele M, Etzrodt M, Marr C, Theis FJ, Schroeder T (2016) Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat Biotechnol 34(7):703–706. https://doi.org/10.1038/nbt.3626

    Article  CAS  PubMed  Google Scholar 

  51. Nehme R, Zuccaro E, Ghosh SD, Li C, Sherwood JL, Pietilainen O, Barrett LE, Limone F, Worringer KA, Kommineni S, Zang Y, Cacchiarelli D, Meissner A, Adolfsson R, Haggarty S, Madison J, Muller M, Arlotta P, Fu Z, Feng G, Eggan K (2018) Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep 23(8):2509–2523. https://doi.org/10.1016/j.celrep.2018.04.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cadwell CR, Scala F, Li S, Livrizzi G, Shen S, Sandberg R, Jiang X, Tolias AS (2017) Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat Protoc 12(12):2531–2553. https://doi.org/10.1038/nprot.2017.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The following sources of funding from the German Research Foundation (DFG) supported work described in this chapter: CRC1080 (project number 221828878) and CRC1193 (project number 264810226). N.S. received support via a PhD fellowship granted by the Institute of Molecular Biology (IMB), Mainz. F.C. received support from Inneruniversitaere Forschungsfoerderung of the University Medical Center of Johannes Gutenberg University Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Berninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharif, N., Calzolari, F., Berninger, B. (2021). Direct In Vitro Reprogramming of Astrocytes into Induced Neurons. In: Ahlenius, H. (eds) Neural Reprogramming. Methods in Molecular Biology, vol 2352. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1601-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1601-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1600-0

  • Online ISBN: 978-1-0716-1601-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics