Skip to main content

Ontogeny of Drug-Metabolizing Enzymes

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

Almost 50% of prescription drugs lack age-appropriate dosing guidelines and therefore are used “off-label.” Only ~10% drugs prescribed to neonates and infants have been studied for safety or efficacy. Immaturity of drug metabolism in children is often associated with drug toxicity. This chapter summarizes data on the ontogeny of major human metabolizing enzymes involved in oxidation, reduction, hydrolysis, and conjugation of drugs. The ontogeny data of individual drug-metabolizing enzymes are important for accurate prediction of drug pharmacokinetics and toxicity in children. This information is critical for designing clinical studies to appropriately test pharmacological hypotheses and develop safer pediatric drugs, and to replace the long-standing practice of body weight- or surface area-normalized drug dosing. The application of ontogeny data in physiologically based pharmacokinetic model and regulatory submission are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hines RN (2013) Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm 452:3–7. https://doi.org/10.1016/j.ijpharm.2012.05.079

    Article  CAS  PubMed  Google Scholar 

  2. Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45:931–956. https://doi.org/10.2165/00003088-200645090-00005

    Article  CAS  PubMed  Google Scholar 

  3. Laughon MM, Avant D, Tripathi N et al (2014) Drug labeling and exposure in neonates. JAMA Pediatr 168. https://doi.org/10.1001/jamapediatrics.2013.4208

  4. Medline Plus, National Institutes of Health (2012)

    Google Scholar 

  5. Gershanik J, Boecler B, Ensley H et al (1982) The gasping syndrome and benzyl alcohol poisoning. N Engl J Med 307:1384–1388. https://doi.org/10.1056/NEJM198211253072206

    Article  CAS  PubMed  Google Scholar 

  6. Weiss CF, Glazko AJ, Weston JK (1960) Chloramphenicol in the newborn infant. N Engl J Med 262:787–794. https://doi.org/10.1056/NEJM196004212621601

    Article  CAS  PubMed  Google Scholar 

  7. Saravanakumar A, Sadighi A, Ryu R et al (2019) Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet 58:1281–1294. https://doi.org/10.1007/s40262-019-00750-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iyanagi T (2007) Molecular mechanism of phase I and phase II drug-mtabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35–112. https://doi.org/10.1016/S0074-7696(06)60002-8

    Article  CAS  PubMed  Google Scholar 

  9. Abduljalil K, Pan X, Pansari A et al (2020) Preterm physiologically based pharmacokinetic model. Part II: applications of the model to predict drug pharmacokinetics in the preterm population. Clin Pharmacokinet 59:501–518. https://doi.org/10.1007/s40262-019-00827-4

    Article  CAS  PubMed  Google Scholar 

  10. Abduljalil K, Pan X, Pansari A et al (2020) A preterm physiologically based pharmacokinetic model. Part I: physiological parameters and model building. Clin Pharmacokinet 59:485–500. https://doi.org/10.1007/s40262-019-00825-6

    Article  PubMed  Google Scholar 

  11. Mooij MG, Schwarz UI, de Koning BAE et al (2014) Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos 42:1268–1274. https://doi.org/10.1124/dmd.114.056929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118:250–267. https://doi.org/10.1016/j.pharmthera.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  13. Ladumor MK, Bhatt DK, Gaedigk A et al (2019) Ontogeny of hepatic sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831. https://doi.org/10.1124/dmd.119.086462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Behm MO, Abdel-Rahman SM, Leeder JS et al (2003) Ontogeny of phase II enzymes: UGT and SULT. Clin Pharmacol Ther 73:P29–P29. https://doi.org/10.1016/S0009-9236(03)90461-9

    Article  Google Scholar 

  15. Miller RP, Roberts RJ, Fischer LJ (1976) Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther 19:284–294. https://doi.org/10.1002/cpt1976193284

    Article  CAS  PubMed  Google Scholar 

  16. Leppik IE (1992) Metabolism of antiepileptic medication: newborn to elderly. Epilepsia 33:32–40. https://doi.org/10.1111/j.1528-1157.1992.tb06225.x

    Article  Google Scholar 

  17. Williams K, Thomson D, Seto I et al (2012) Standard 6: age groups for pediatric trials. Pediatrics 129:S153–S160. https://doi.org/10.1542/peds.2012-0055I

    Article  PubMed  Google Scholar 

  18. Bhatt DK, Gaedigk A, Pearce RE et al (2017) Age-dependent protein abundance of cytosolic alcohol and aldehyde dehydrogenases in human liver. Drug Metab Dispos 45:1044–1048. https://doi.org/10.1124/dmd.117.076463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu M, Bhatt DK, Yeung CK et al (2017) Genetic and nongenetic factors associated with protein abundance of flavin-containing monooxygenase 3 in human liver. J Pharmacol Exp Ther 363:265–274. https://doi.org/10.1124/jpet.117.243113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhatt DK, Basit A, Zhang H et al (2018) Hepatic abundance and activity of androgen-and drug-metabolizing enzyme UGT2B17 are associated with genotype, age, and sex. Drug Metab Dispos 46:888–896. https://doi.org/10.1124/dmd.118.080952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boberg M, Vrana M, Mehrotra A et al (2017) Age-dependent absolute abundance of hepatic carboxylesterases (CES1 and CES2) by LC-MS/MS proteomics: application to PBPK modeling of oseltamivir in vivo pharmacokinetics in infants. Drug Metab Dispos 45:216–223. https://doi.org/10.1124/dmd.116.072652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhatt DK, Mehrotra A, Gaedigk A et al (2019) Age-and genotype-dependent variability in the protein abundance and activity of six major uridine diphosphate-glucuronosyltransferases in human liver. Clin Pharmacol Ther 105:131–141. https://doi.org/10.1002/cpt.1109

    Article  CAS  PubMed  Google Scholar 

  23. Sadler NC, Nandhikonda P, Webb-Robertson B-J et al (2016) Hepatic cytochrome P450 activity, abundance, and expression throughout human development. Drug Metab Dispos 44:984–991. https://doi.org/10.1124/dmd.115.068593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pearce RE, Gaedigk R, Twist GP et al (2016) Developmental expression of CYP2B6: a comprehensive analysis of mRNA expression, protein content and bupropion hydroxylase activity and the impact of genetic variation. Drug Metab Dispos 44:948–958. https://doi.org/10.1124/dmd.115.067546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Achour B, Barber J, Rostami-Hodjegan A (2014) Expression of hepatic drug-metabolizing cytochrome P450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos 42:1349–1356. https://doi.org/10.1124/dmd.114.058834

    Article  CAS  PubMed  Google Scholar 

  26. Drozdzik M, Busch D, Lapczuk J et al (2018) Protein abundance of clinically relevant drug-metabolizing enzymes in the human liver and intestine: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 104:515–524. https://doi.org/10.1002/cpt.967

    Article  CAS  PubMed  Google Scholar 

  27. Hines RN (2007) Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol 21:169–175. https://doi.org/10.1002/jbt.20179

    Article  CAS  PubMed  Google Scholar 

  28. Johnson TN, Tanner MS, Taylor CJ et al (2001) Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol 51:451–460. https://doi.org/10.1046/j.1365-2125.2001.01370.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leeder JS, Gaedigk R, Marcucci KA et al (2005) Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther 314:626–635. https://doi.org/10.1124/jpet.105.086504

    Article  CAS  PubMed  Google Scholar 

  30. Stevens JC, Hines RN, Gu C et al (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307:573–582. https://doi.org/10.1124/jpet.103.054841

    Article  CAS  PubMed  Google Scholar 

  31. Johnson TN, Tucker GT, Rostami-Hodjegan A (2008) Development of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther 83:670–671. https://doi.org/10.1038/sj.clpt.6100327

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y-T, Trzoss L, Yang D et al (2015) Ontogenic expression of human carboxylesterase-2 and cytochrome P450 3A4 in liver and duodenum: postnatal surge and organ-dependent regulation. Toxicology 330:55–61. https://doi.org/10.1016/j.tox.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  33. Völler S, Flint RB, Andriessen P et al (2019) Rapidly maturing fentanyl clearance in preterm neonates. Arch Dis Child Fetal 104:F598–F603. https://doi.org/10.1136/archdischild-2018-315920

    Article  Google Scholar 

  34. Vyhlidal CA, Pearce RE, Gaedigk R et al (2015) Variability in expression of CYP3A5 in human fetal liver. Drug Metab Dispos 43:1286–1293. https://doi.org/10.1124/dmd.115.064998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lacroix D, Sonnier M, Moncion A et al (1997) Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247:625–634. https://doi.org/10.1111/j.1432-1033.1997.00625.x

    Article  CAS  PubMed  Google Scholar 

  36. Vyhlidal CA, Bi C, Ye SQ et al (2016) Dynamics of cytosine methylation in the proximal promoters of CYP3A4 and CYP3A7 in pediatric and prenatal livers. Drug Metab Dispos 44:1020–1026. https://doi.org/10.1124/dmd.115.068726

    Article  CAS  PubMed  Google Scholar 

  37. Payne K, Mattheyse FJ, Liebenberg D et al (1989) The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol 37:267–272. https://doi.org/10.1007/BF00679782

    Article  CAS  PubMed  Google Scholar 

  38. Kearns GL, Robinson PK, Wilson JT et al (2003) Cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther 74:312–325. https://doi.org/10.1016/S0009-9236(03)00225-X

    Article  CAS  PubMed  Google Scholar 

  39. Olguín HJ, Martínez HO, Pérez CF et al (2017) Pharmacokinetics of sildenafil in children with pulmonary arterial hypertension. World J Pediatr 13:588–592. https://doi.org/10.1007/s12519-017-0043-4

    Article  CAS  PubMed  Google Scholar 

  40. Pacifici GM (2014) Clinical pharmacology of midazolam in neonates and children: effect of disease-a review. Int J Pediatr. https://doi.org/10.1155/2014/309342

  41. Brussee JM, Yu H, Krekels EHJ et al (2018) First-pass CYP3A-mediated metabolism of midazolam in the gut wall and liver in preterm neonates. CPT Pharmacometrics Syst Pharmacol 7:374–383. https://doi.org/10.1002/psp4.12295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nofziger C, Turner AJ, Sangkuhl K et al (2020) PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther 107:154–170. https://doi.org/10.1002/cpt.1643

    Article  CAS  PubMed  Google Scholar 

  43. Stevens JC, Marsh SA, Zaya MJ et al (2008) Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos 36:1587–1593. https://doi.org/10.1124/dmd.108.021873

    Article  CAS  PubMed  Google Scholar 

  44. Treluyer J, Jacqz-Algrain E, Alvarez F et al (1991) Expression of CYP2D6 in developing human liver. Eur J Biochem 202:583–588. https://doi.org/10.1111/j.1432-1033.1991.tb16411.x

    Article  CAS  PubMed  Google Scholar 

  45. Upreti VV, Wahlstrom JL (2016) Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol 56:266–283. https://doi.org/10.1002/jcph.585

    Article  CAS  PubMed  Google Scholar 

  46. Blake MJ, Gaedigk A, Pearce RE et al (2007) Ontogeny of dextromethorphan O-and N-demethylation in the first year of life. Clin Pharmacol Ther 81:510–516. https://doi.org/10.1038/sj.clpt.6100101

    Article  CAS  PubMed  Google Scholar 

  47. Gaedigk A, Dinh JC, Jeong H et al (2018) Ten years’ experience with the CYP2D6 activity score: a perspective on future investigations to improve clinical predictions for precision therapeutics. J Pers Med 8:15. https://doi.org/10.3390/jpm8020015

    Article  PubMed Central  Google Scholar 

  48. Crews KR, Gaedigk A, Dunnenberger HM et al (2012) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91:321–326. https://doi.org/10.1038/clpt.2011.287

    Article  CAS  PubMed  Google Scholar 

  49. Bell G, Caudle K, Whirl-Carrillo M et al (2017) Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin Pharmacol Ther 102:213–218. https://doi.org/10.1002/cpt.598

    Article  CAS  PubMed  Google Scholar 

  50. Hicks J, Sangkuhl K, Swen J et al (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102:37–44. https://doi.org/10.1002/cpt.597

    Article  CAS  PubMed  Google Scholar 

  51. Hicks J, Bishop J, Sangkuhl K et al (2015) Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther 98:127–134. https://doi.org/10.1002/cpt.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown J, Abdel-Rahman S, van Haandel L et al (2016) Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD. Clin Pharmacol Ther 99:642–650. https://doi.org/10.1002/cpt.319

    Article  CAS  PubMed  Google Scholar 

  53. Ito S, Gow R, Verjee Z et al (1998) Intravenous and oral propafenone for treatment of tachycardia in infants and children: pharmacokinetics and clinical response. J Clin Pharmacol 38:496–501. https://doi.org/10.1002/j.1552-4604.1998.tb05786.x

    Article  CAS  PubMed  Google Scholar 

  54. Brown JT, Bishop JR, Sangkuhl K et al (2019) Clinical pharmacogenetics implementation consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther 106:94–102. https://doi.org/10.1002/cpt.1409

    Article  PubMed  Google Scholar 

  55. Hakkola J, Pasanen M, Purkunen R et al (1994) Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem Pharmacol 48:59–64. https://doi.org/10.1016/0006-2952(94)90223-2

    Article  CAS  PubMed  Google Scholar 

  56. Johansson M, Strahm E, Rane A et al (2014) CYP2C8 and CYP2C9 mRNA expression profile in the human fetus. Front Genet 5:58. https://doi.org/10.3389/fgene.2014.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Treluyer J-M, Gueret G, Cheron G et al (1997) Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 7:441–452. https://doi.org/10.1097/00008571-199712000-00002

    Article  CAS  PubMed  Google Scholar 

  58. Koukouritaki SB, Manro JR, Marsh SA et al (2004) Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 308:965–974. https://doi.org/10.1124/jpet.103.060137

    Article  CAS  PubMed  Google Scholar 

  59. Herranz JL, Armijo JA, Arteaga R (1988) Clinical side effects of phenobarbital, primidone, phenytoin, carbamazepine, and valproate during monotherapy in children. Epilepsia 29:794–804. https://doi.org/10.1111/j.1528-1157.1988.tb04237.x

    Article  CAS  PubMed  Google Scholar 

  60. Curless RG, Walson PD, Carter DE (1976) Phenytoin kinetics in children. Neurology 26:715. https://doi.org/10.1212/wnl.26.8.715

    Article  CAS  PubMed  Google Scholar 

  61. Kearns GL, Lu S, Maganti L et al (2008) Pharmacokinetics and safety of montelukast oral granules in children 1 to 3 months of age with bronchiolitis. J Clin Pharmacol 48:502–511. https://doi.org/10.1177/0091270008314251

    Article  CAS  PubMed  Google Scholar 

  62. Andersson T, Hassall E, Lundborg P et al (2000) Pharmacokinetics of orally administered omeprazole in children. Am J Gastroenterol 95:3101–3106. https://doi.org/10.1111/j.1572-0241.2000.03256.x

    Article  CAS  PubMed  Google Scholar 

  63. Hoyo-Vadillo C, Venturelli CR, González H et al (2005) Metabolism of omeprazole after two oral doses in children 1 to 9 months old. In: Proceedings of the Western Pharmacology Society, 1998, p 108

    Google Scholar 

  64. Yang H-YL, Namkung MJ, Juchau MR (1995) Expression of functional cytochrome P4501A1 in human embryonic hepatic tissues during organogenesis. Biochem Pharmacol 49:717–726. https://doi.org/10.1016/0006-2952(94)00493-6

    Article  CAS  PubMed  Google Scholar 

  65. Cazeneuve C, Pons G, Rey E et al (1994) Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and adults. Br J Clin Pharmacol 37:405–412. https://doi.org/10.1111/j.1365-2125.1994.tb05706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee QP, Fantel AG, Juchau MR (1991) Human embryonic cytochrome P450s: phenoxazone ethers as probes for expression of functional isoforms during organogenesis. Biochem Pharmacol 42:2377–2385. https://doi.org/10.1016/0006-2952(91)90244-y

    Article  CAS  PubMed  Google Scholar 

  67. Carrier O, Pons G, Rey E et al (1988) Maturation of caffeine metabolic pathways in infancy. Clin Pharmacol Ther 44:145–151. https://doi.org/10.1038/clpt.1988.129

    Article  CAS  PubMed  Google Scholar 

  68. Ratanasavanh D, Beaune P, Morel F et al (1991) Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. Hepatology 13:1142–1151

    Article  CAS  PubMed  Google Scholar 

  69. Sonnier M, Cresteil T (1998) Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 251:893–898. https://doi.org/10.1046/j.1432-1327.1998.2510893.x

    Article  CAS  PubMed  Google Scholar 

  70. Aranda JV, Cook CE, Gorman W et al (1979) Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr 94:663–668. https://doi.org/10.1016/s0022-3476(79)80047-5

    Article  CAS  PubMed  Google Scholar 

  71. Blake MJ, Abdel-Rahman SM, Pearce RE et al (2006) Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatr Res 60:717–723. https://doi.org/10.1203/01.pdr.0000245909.74166.00

    Article  CAS  PubMed  Google Scholar 

  72. Xu H, Rajesan R, Harper P et al (2005) Induction of cytochrome P450 1A by cow milk-based formula: a comparative study between human milk and formula. Br J Pharmacol 146:296–305. https://doi.org/10.1038/sj.bjp.0706319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carpenter SP, Lasker JM, Raucy JL (1996) Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes. Mol Pharmacol 49:260–268

    CAS  PubMed  Google Scholar 

  74. Johnsrud EK, Koukouritaki SB, Divakaran K et al (2003) Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther 307:402–407. https://doi.org/10.1124/jpet.103.053124

    Article  CAS  PubMed  Google Scholar 

  75. Khalighi M, Brzezinski M, Chen H et al (1999) Inhibition of human prenatal biosynthesis of all-trans-retinoic acid by ethanol, ethanol metabolites, and products of lipid peroxidation reactions: a possible role for CYP2E1. Biochem Pharmacol 57:811–821. https://doi.org/10.1016/s0006-2952(98)00362-1

    Article  CAS  PubMed  Google Scholar 

  76. Brzezinski MR, Boutelet-Bochan H, Person RE et al (1999) Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain. J Pharmacol Exp Ther 289:1648–1653

    CAS  PubMed  Google Scholar 

  77. Vieira I, Sonnier M, Cresteil T (1996) Developmental expression of CYP2E1 in the human liver: hypermethylation control of gene expression during the neonatal period. Eur J Biochem 238:476–483. https://doi.org/10.1111/j.1432-1033.1996.0476z.x

    Article  CAS  PubMed  Google Scholar 

  78. Boutelet-Bochan H, Huang Y, Juchau MR (1997) Expression of CYP2E1during embryogenesis and fetogenesis in human cephalic tissues: implications for the fetal alcohol syndrome. Biochem Biophys Res Commun 238:443–447. https://doi.org/10.1006/bbrc.1997.7296

    Article  CAS  PubMed  Google Scholar 

  79. Gupta KK, Gupta VK, Shirasaka T (2016) An update on fetal alcohol syndrome-pathogenesis, risks, and treatment. Alcohol Clin Exp Res 40:1594–1602. https://doi.org/10.1111/acer.13135

    Article  CAS  PubMed  Google Scholar 

  80. Croom EL, Stevens JC, Hines RN et al (2009) Human hepatic CYP2B6 developmental expression: the impact of age and genotype. Biochem Pharmacol 78:184–190. https://doi.org/10.1016/j.bcp.2009.03.029

    Article  CAS  PubMed  Google Scholar 

  81. Al Koudsi N, Hoffmann EB, Assadzadeh A et al (2010) Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol 66:239–251. https://doi.org/10.1007/s00228-009-0762-0

    Article  CAS  PubMed  Google Scholar 

  82. Shimada T, Yamazaki H, Mimura M et al (1996) Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 24:515–522

    CAS  PubMed  Google Scholar 

  83. Tanner J-A, Prasad B, Claw KG et al (2017) Predictors of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank: influence of genetic and nongenetic factors. J Pharmacol Exp Ther 360:129–139. https://doi.org/10.1124/jpet.116.237594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dempsey DA, Sambol NC, Jacob P III et al (2013) CYP2A6 genotype but not age determines cotinine half-life in infants and children. Clin Pharmacol Ther 94:400–406. https://doi.org/10.1038/clpt.2013.114

    Article  CAS  PubMed  Google Scholar 

  85. Koukouritaki SB, Simpson P, Yeung CK et al (2002) Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res 51:236–243. https://doi.org/10.1203/00006450-200202000-00018

    Article  CAS  PubMed  Google Scholar 

  86. Dolphin CT, Cullingford TE, Shcphard EA et al (1996) Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FMO4. Eur J Biochem 235:683–689. https://doi.org/10.1111/j.1432-1033.1996.00683.x

    Article  CAS  PubMed  Google Scholar 

  87. Yeung CK, Lang DH, Thummel KE et al (2000) Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos 28:1107–1111

    CAS  PubMed  Google Scholar 

  88. Zhang J, Cashman JR (2006) Quantitative analysis of FMO gene mRNA levels in human tissues. Drug Metab Dispos 34:19–26. https://doi.org/10.1124/dmd.105.006171

    Article  CAS  PubMed  Google Scholar 

  89. Chen Y, Zane NR, Thakker DR et al (2016) Quantification of flavin-containing monooxygenases 1, 3, and 5 in human liver microsomes by UPLC-MRM-based targeted quantitative proteomics and its application to the study of ontogeny. Drug Metab Dispos 44:975–983. https://doi.org/10.1124/dmd.115.067538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zane NR, Chen Y, Wang MZ et al (2018) Cytochrome P450 and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity. Pediatr Res 83:527–535. https://doi.org/10.1038/pr.2017.226

    Article  CAS  PubMed  Google Scholar 

  91. Thee S, Seifart HI, Rosenkranz B et al (2011) Pharmacokinetics of ethionamide in children. Antimicrob Agents Chemother 55:4594–4600. https://doi.org/10.1128/AAC.00379-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nguyen PTT, Parvez MM, Kim MJ et al (2018) Development of a physiologically based pharmacokinetic model of ethionamide in the pediatric population by integrating flavin-containing monooxygenase 3 maturational changes over time. J Clin Pharmacol 58:1347–1360. https://doi.org/10.1002/jcph.1133

    Article  CAS  PubMed  Google Scholar 

  93. Smith M, Hopkinson DA, Harris H (1971) Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet 34:251–271. https://doi.org/10.1111/j.1469-1809.1971.tb00238.x

    Article  CAS  PubMed  Google Scholar 

  94. Lee S-L, Chau G-Y, Yao C-T et al (2006) Functional assessment of human alcohol dehydrogenase family in ethanolmetabolism: significance of first-pass metabolism. Alcohol Clin Exp Res 30:1132–1142. https://doi.org/10.1111/j.1530-0277.2006.00139.x

    Article  CAS  PubMed  Google Scholar 

  95. Molotkov A, Duester G (2003) Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid. J Biol 278:36085–36090. https://doi.org/10.1074/jbc.M303709200

    Article  CAS  Google Scholar 

  96. De Jonge ME, Huitema ADR, Rodenhuis S et al (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44:1135–1164. https://doi.org/10.2165/00003088-200544110-00003

    Article  PubMed  Google Scholar 

  97. Yule SM (2004) Cyclophosphamide metabolism in children with non-Hodgkin’s lymphoma. Clin Cancer Res 10:455–460. https://doi.org/10.1158/1078-0432.CCR-0844-03

    Article  CAS  PubMed  Google Scholar 

  98. Hines RN, Simpson PM, McCarver DG (2016) Age-dependent human hepatic carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) postnatal ontogeny. Drug Metab Dispos 44:959–966. https://doi.org/10.1124/dmd.115.068957

    Article  CAS  PubMed  Google Scholar 

  99. Yang D, Pearce RE, Wang X et al (2009) Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol 77:238–247. https://doi.org/10.1016/j.bcp.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  100. Shi D, Yang D, Prinssen EP et al (2011) Surge in expression of carboxylesterase 1 during the post-neonatal stage enables a rapid gain of the capacity to activate the anti-influenza prodrug oseltamivir. J Infect 203:937–942. https://doi.org/10.1093/infdis/jiq145

    Article  CAS  Google Scholar 

  101. Ma MK, Zamboni WC, Radomski KM et al (2000) Pharmacokinetics of irinotecan and its metabolites SN-38 and APC in children with recurrent solid tumors after protracted low-dose irinotecan. Clin Cancer Res 6:813–819

    CAS  PubMed  Google Scholar 

  102. Xu G, Zhang W, Ma MK et al (2002) Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res 8:2605–2611

    CAS  PubMed  Google Scholar 

  103. Oo C, Hill G, Dorr A et al (2003) Pharmacokinetics of anti-influenza prodrug oseltamivir in children aged 1–5 years. Eur J Clin Pharmacol 59:411–415. https://doi.org/10.1007/s00228-003-0639-6

    Article  CAS  PubMed  Google Scholar 

  104. Oo C, Barrett J, Hill G et al (2001) Pharmacokinetics and dosage recommendations for an oseltamivir oral suspension for the treatment of influenza in children. Paediatr Drugs 3:229–236. https://doi.org/10.2165/00128072-200103030-00005

    Article  CAS  PubMed  Google Scholar 

  105. Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59. https://doi.org/10.1016/s0009-2797(00)00197-6

    Article  CAS  PubMed  Google Scholar 

  106. Pacifici GM, Peng D, Rane A (1983) Epoxide hydrolase and aryl hydrocarbon hydroxylase in human fetal tissues: activities in nuclear and microsomal fractions and in isolated hepatocytes. Pediatr Pharmacol (New York) 3:189–197

    CAS  Google Scholar 

  107. Pacifici GM, Temellini A, Giuliani L et al (1988) Cytosolic epoxide hydrolase in humans: development and tissue distribution. Arch Toxicol 62:254–257. https://doi.org/10.1007/BF00332483

    Article  CAS  PubMed  Google Scholar 

  108. Pacifici GM, Colizzi C, Giuliani L et al (1983) Cytosolic epoxide hydrolase in fetal and adult human liver. Arch Toxicol 54:331–341. https://doi.org/10.1007/BF01234486

    Article  CAS  PubMed  Google Scholar 

  109. Mackness B, Beltran-Debon R, Aragones G et al (2010) Human tissue distribution of paraoxonases 1 and 2 mRNA. IUBMB Life 62:480–482. https://doi.org/10.1002/iub.347

    Article  CAS  PubMed  Google Scholar 

  110. Huen K, Harley K, Brooks J et al (2009) Developmental changes in PON1 enzyme activity in young children and effects of PON1 polymorphisms. Environ Health Perspect 117:1632–1638. https://doi.org/10.1289/ehp.0900870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cole TB, Jampsa RL, Walter BJ et al (2003) Expression of human paraoxonase (PON1) during development. Pharmacogenetics 13:357–364. https://doi.org/10.1097/00008571-200306000-00007

    Article  CAS  PubMed  Google Scholar 

  112. Levy E, Trudel K, Bendayan M et al (2007) Biological role, protein expression, subcellular localization, and oxidative stress response of paraoxonase 2 in the intestine of humans and rats. Am J Physiol Gastrointest Liver Physiol 293:G1252–G1261. https://doi.org/10.1152/ajpgi.00369.2007

    Article  CAS  PubMed  Google Scholar 

  113. Tayama Y, Miyake K, Sugihara K et al (2007) Developmental changes of aldehyde oxidase activity in young japanese children. Clin Pharmacol Ther 81:567–572. https://doi.org/10.1038/sj.clpt.6100078

    Article  CAS  PubMed  Google Scholar 

  114. Ciotti M, Obaray R, Martín MG et al (1997) Genetic defects at the UGT1 locus associated with Crigler-Najjar type I disease, including a prenatal diagnosis. Am J Med Genet 68:173–178. https://doi.org/10.1002/(SICI)1096-8628(19970120)68:2<173::AID-AJMG10>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  115. Argikar UA, Remmel RP (2009) Variation in glucuronidation of lamotrigine in human liver microsomes. Xenobiotica 39:355–363. https://doi.org/10.1080/00498250902745082

    Article  CAS  PubMed  Google Scholar 

  116. King CD, Rios GR, Assouline JA et al (1999) Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys 365:156–162. https://doi.org/10.1006/abbi.1999.1155

    Article  CAS  PubMed  Google Scholar 

  117. Allegaert K, Peeters MY, Verbesselt R et al (2007) Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth 99:864–870. https://doi.org/10.1093/bja/aem294

    Article  CAS  PubMed  Google Scholar 

  118. Saint-Maurice C, Cockshott ID, Douglas EJ et al (1989) Pharamacokinetics of propofol in young children after a single dose. Br J Anaesth 63:667–670. https://doi.org/10.1093/bja/63.6.667

    Article  CAS  PubMed  Google Scholar 

  119. Raoof AA, Van Obbergh LJ, Verbeeck RK (1995) Propofol pharmacokinetics in children with biliary atresia. Br J Anaesth 74:46–49. https://doi.org/10.1093/bja/74.1.46

    Article  CAS  PubMed  Google Scholar 

  120. Ekström L, Johansson M, Rane A (2013) Tissue distribution and relative gene expression of UDP-glucuronosyltransferases (2B7, 2B15, 2B17) in the human fetus. Drug Metab Dispos 41:291–295. https://doi.org/10.1124/dmd.112.049197

    Article  CAS  PubMed  Google Scholar 

  121. Divakaran K, Hines RN, McCarver DG (2014) Human hepatic UGT2B15 developmental expression. Toxicol Sci 141:292–299. https://doi.org/10.1093/toxsci/kfu126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Leakey JEA, Hume R, Burchell B (1987) Development of multiple activities of UDP-glucuronyltransferase in human liver. Biochem J 243:859–861. https://doi.org/10.1042/bj2430859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moj D, Britz H, Burhenne J et al (2017) A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification. Cancer Chemother Pharmacol 80:1013–1026. https://doi.org/10.1007/s00280-017-3447-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chamberlain JM, Capparelli EV, Brown KM et al (2012) Pharmacokinetics of intravenous lorazepam in pediatric patients with and without status epilepticus. J Pediatr 160:667–672. https://doi.org/10.1016/j.jpeds.2011.09.048

    Article  CAS  PubMed  Google Scholar 

  125. Bouwmeester NJ, Anderson BJ, Tibboel D et al (2004) Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 92:208–217. https://doi.org/10.1093/bja/aeh042

    Article  CAS  PubMed  Google Scholar 

  126. Hume R, Barker EV, Coughtrie MWH (1996) Differential expression and immunohistochemical localisation of the phenol and hydroxysteroid sulphotransferase enzyme families in the developing lung. Histochem Cell Biol 105:147–152. https://doi.org/10.1007/BF01696154

    Article  CAS  PubMed  Google Scholar 

  127. Richard K, Hume R, Kaptein E et al (2001) Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab 86:2734–2742. https://doi.org/10.1210/jcem.86.6.7569

    Article  CAS  PubMed  Google Scholar 

  128. Adjei AA, Gaedigk A, Simon SD et al (2008) Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol 82:155–165. https://doi.org/10.1002/bdra.20535

    Article  CAS  PubMed  Google Scholar 

  129. Duanmu Z, Weckle A, Koukouritaki SB et al (2006) Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre-and postnatal human liver. J Pharmacol Exp Ther 316:1310–1317. https://doi.org/10.1124/jpet.105.093633

    Article  CAS  PubMed  Google Scholar 

  130. Cappiello M, Giuliani L, Rane A et al (1991) Dopamine sulphotransferase is better developed than p-nitrophenol sulphotransferase in the human fetus. Dev Pharmacol Ther 16:83–88

    Article  CAS  PubMed  Google Scholar 

  131. Pacifici GM, Kubrich M, Giuliani L et al (1993) Sulphation and glucuronidation of ritodrine in human foetal and adult tissues. Eur J Clin Pharmacol 44:259–264. https://doi.org/10.1007/BF00271368

    Article  CAS  PubMed  Google Scholar 

  132. Stanley EL, Hume R, Coughtrie MWH (2005) Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol Cell Endocrinol 240:32–42. https://doi.org/10.1016/j.mce.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  133. Peltola H, Väärälä M, Renkonen OV et al (1992) Pharmacokinetics of single-dose oral ciprofloxacin in infants and small children. Antimicrob Agents Chemother 36:1086–1090. https://doi.org/10.1128/aac.36.5.1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300:361–366. https://doi.org/10.1124/jpet.300.2.361

    Article  CAS  PubMed  Google Scholar 

  135. Strange RC, Howie AF, Hume R et al (1989) The developmental expression of alpha-, mu-and pi-class glutathione S-transferases in human liver. Biochim Biophys Acta 993:186–190. https://doi.org/10.1016/0304-4165(89)90162-1

    Article  CAS  PubMed  Google Scholar 

  136. Strange RC, Davis BA, Faulder CG et al (1985) The human glutathione S-transferases: developmental aspects of the GST1, GST2, and GST3 loci. Biochem Genet 23:1011–1028. https://doi.org/10.1007/BF00499944

    Article  CAS  PubMed  Google Scholar 

  137. Van Lieshout EM, Knapen MF, Lange WP et al (1998) Localization of glutathione S-transferases alpha and pi in human embryonic tissues at 8 weeks gestational age. Hum Reprod 13:1380–1386. https://doi.org/10.1093/humrep/13.5.1380

    Article  PubMed  Google Scholar 

  138. Cossar D, Bell J, Strange R et al (1990) The α and π isoenzymes of glutathione S-transferase in human fetal lung: in utero ontogeny compared with differentiation in lung organ culture. Biochim Biophys Acta 1037:221–226. https://doi.org/10.1016/0167-4838(90)90171-b

    Article  CAS  PubMed  Google Scholar 

  139. Beckett GJ, Howie AF, Hume R et al (1990) Human glutathione S-transferases: radioimmunoassay studies on the expression of alpha-, mu-and pi-class isoenzymes in developing lung and kidney. Biochim Biophys Acta 1036:176–182. https://doi.org/10.1016/0304-4165(90)90031-q

    Article  CAS  PubMed  Google Scholar 

  140. Pacifici GM, Romiti P, Giuliani L et al (1991) Thiopurine methyltransferase in humans: development and tissue distribution. Dev Pharmacol Ther 17:16–23. https://doi.org/10.1159/000457495

    Article  CAS  PubMed  Google Scholar 

  141. Serpe L, Calvo PL, Muntoni E et al (2009) Thiopurine S-methyltransferase pharmacogenetics in a large-scale healthy Italian–Caucasian population: differences in enzyme activity. Pharmacogenomics 10:1753–1765. https://doi.org/10.2217/pgs.09.103

    Article  CAS  PubMed  Google Scholar 

  142. Ganiere-Monteil C, Medard Y, Lejus C et al (2004) Phenotype and genotype for thiopurine methyltransferase activity in the french caucasian population: impact of age. Eur J Clin Pharmacol 60:89–96. https://doi.org/10.1007/s00228-004-0732-5

    Article  CAS  PubMed  Google Scholar 

  143. Pacifici GM, Bencini C, Rane A (1986) Acetyltransferase in humans: development and tissue distribution. Pharmacology 32:283–291. https://doi.org/10.1159/000138181

    Article  CAS  PubMed  Google Scholar 

  144. Rodrigues-Lima F, Cooper RN, Goudeau B et al (2003) Skeletal muscles express the xenobiotic-metabolizing enzyme arylamine N-acetyltransferase. J Histochem Cytochem 51:789–796. https://doi.org/10.1177/002215540305100610

    Article  CAS  PubMed  Google Scholar 

  145. Smelt VA, Upton A, Adjaye J et al (2000) Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum Mol Genet 9:1101–1107. https://doi.org/10.1093/hmg/9.7.1101

    Article  CAS  PubMed  Google Scholar 

  146. Pariente-Khayat A, Pons G, Rey E et al (1991) Caffeine acetylator phenotyping during maturation in infants. Pediatr Res 29:492–495. https://doi.org/10.1203/00006450-199105010-00015

    Article  CAS  PubMed  Google Scholar 

  147. Pons G, Rey E, Carrier O et al (1989) Maturation of AFMU excretion in infants. Fundam Clin Pharmacol 3:589–595. https://doi.org/10.1111/j.1472-8206.1989.tb00461.x

    Article  CAS  PubMed  Google Scholar 

  148. Pariente-Khayat A, Rey E, Gendrel D et al (1997) Isoniazid acetylation metabolic ratio during maturation in children. Clin Pharmacol Ther 62:377–383. https://doi.org/10.1016/S0009-9236(97)90115-6

    Article  CAS  PubMed  Google Scholar 

  149. Kearns GL, Abdel-Rahman SM, Alander SW et al (2003) Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167. https://doi.org/10.1056/NEJMra035092

    Article  CAS  PubMed  Google Scholar 

  150. Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP 32:1–277. https://doi.org/10.1016/S0146-6453(03)00002-2

    Article  Google Scholar 

  151. Barter ZE, Chowdry JE, Harlow JR et al (2008) Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos 36:2405–2409. https://doi.org/10.1124/dmd.108.021311

    Article  CAS  PubMed  Google Scholar 

  152. Duan P, Wu F, Moore JN et al (2019) Assessing CYP2C19 ontogeny in neonates and infants using physiologically based pharmacokinetic models: impact of enzyme maturation versus inhibition. CPT Pharmacometrics Syst Pharmacol 8:158–166. https://doi.org/10.1002/psp4.12350

    Article  CAS  PubMed  Google Scholar 

  153. Bjorkman S (2005) Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol 59:691–704. https://doi.org/10.1111/j.1365-2125.2004.02225.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lin W, Heimbach T, Jain JP et al (2016) A physiologically based pharmacokinetic model to describe artemether pharmacokinetics in adult and pediatric patients. J Pharm Sci 105:3205–3213. https://doi.org/10.1016/j.xphs.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  155. Maharaj AR, Barrett JS, Edginton AN (2013) A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J 15:455–464. https://doi.org/10.1208/s12248-013-9451-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rioux N, Waters NJ (2016) Physiologically based pharmacokinetic modeling in pediatric oncology drug development. Drug Metab Dispos 44:934–943. https://doi.org/10.1124/dmd.115.068031

    Article  CAS  PubMed  Google Scholar 

  157. Jamei M (2016) Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: a transition from academic curiosity to regulatory acceptance. Curr Pharmacol Rep 2:161–169. https://doi.org/10.1007/s40495-016-0059-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Grimstein M, Yang Y, Zhang X et al (2019) Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s Office of Clinical Pharmacology. J Pharm Sci 108:21–25. https://doi.org/10.1016/j.xphs.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  159. Shebley M, Sandhu P, Emami Riedmaier A et al (2018) Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther 104:88–110. https://doi.org/10.1002/cpt.1013

    Article  PubMed  PubMed Central  Google Scholar 

  160. United States Food and Drug Administration CDER (2016) Deflazacort clinical pharmacology review. FDA, Silver Spring, MD

    Google Scholar 

  161. Parmar S, Patel K, Pinilla-Ibarz J (2014) Ibrutinib (imbruvica): a novel targeted therapy for chronic lymphocytic leukemia. P&T 39:483–519

    Google Scholar 

  162. FDA (2013) IMBRUVICA safely and effectively prescribing information. FDA, Silver Spring, MD

    Google Scholar 

  163. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  164. Habano W, Kawamura K, Iizuka N et al (2015) Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clin Epigenetics 7:105. https://doi.org/10.1186/s13148-015-0136-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hines RN, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300:355–360. https://doi.org/10.1124/jpet.300.2.355

    Article  CAS  PubMed  Google Scholar 

  166. Durnas C, Loi C-M, Cusack BJ (1990) Hepatic drug metabolism and aging. Clin Pharmacokinet 19:359–389. https://doi.org/10.2165/00003088-199019050-00002

    Article  CAS  PubMed  Google Scholar 

  167. Osabe M, Sugatani J, Fukuyama T et al (2008) Expression of hepatic UDP-glucuronosyltransferase 1A1 and 1A6 correlated with increased expression of the nuclear constitutive androstane receptor and peroxisome proliferator-activated receptor α in male rats fed a high-fat and high-sucrose diet. Drug Metab Dispos 36:294–302. https://doi.org/10.1124/dmd.107.017731

    Article  CAS  PubMed  Google Scholar 

  168. Xu S-F, Hu A-L, Xie L et al (2019) Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. Peer J 7:e7429. https://doi.org/10.7717/peerj.7429

    Article  PubMed  PubMed Central  Google Scholar 

  169. Remer T, Boye KR, Hartmann MF et al (2005) Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years. J Clin Endocrinol Metab 90:2015–2021. https://doi.org/10.1210/jc.2004-1571

    Article  CAS  PubMed  Google Scholar 

  170. Rainey WE, Carr BR, Sasano H et al (2002) Dissecting human adrenal androgen production. Trends Endocrinol Metab 13:234–239. https://doi.org/10.1016/S1043-2760(02)00609-4

    Article  CAS  PubMed  Google Scholar 

  171. Lind J (2006) Changes in the liver circulation at birth. Ann N Y Acad Sci 111:110–120. https://doi.org/10.1111/j.1749-6632.1963.tb36952.x

    Article  Google Scholar 

  172. Selwyn FP, Cheng SL, Klaassen CD et al (2016) Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos 44:262–274. https://doi.org/10.1124/dmd.115.067504

    Article  PubMed  PubMed Central  Google Scholar 

  173. Selwyn FP, Cheng SL, Bammler TK et al (2015) Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol Sci 147:84–103. https://doi.org/10.1093/toxsci/kfv110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Peng L, Yoo B, Gunewardena SS et al (2012) RNA sequencing reveals dynamic changes of mRNA abundance of cytochromes P450 and their alternative transcripts during mouse liver development. Drug Metab Dispos 40:1198–1209. https://doi.org/10.1124/dmd.112.045088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hart SN, Cui Y, Klaassen CD et al (2009) Three patterns of cytochrome P450 gene expression during liver maturation in mice. Drug Metab Dispos 37:116–121. https://doi.org/10.1124/dmd.108.023812

    Article  CAS  PubMed  Google Scholar 

  176. Peng L, Cui JY, Yoo B et al (2013) RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice. Drug Metab Dispos 41:2175–2186. https://doi.org/10.1124/dmd.113.054635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fu ZD, Csanaky IL, Klaassen CD (2012) Effects of aging on mRNA profiles for drug-metabolizing enzymes and transporters in livers of male and female mice. Drug Metab Dispos 40:1216–1225. https://doi.org/10.1124/dmd.111.044461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cui JY, Choudhuri S, Knight TR et al (2010) Genetic and epigenetic regulation and expression signatures of glutathione S-transferases in developing mouse liver. Toxicol Sci 116:32–43. https://doi.org/10.1093/toxsci/kfq115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Elbarbry FA, McNamara PJ, Alcorn J (2007) Ontogeny of hepatic CYP1A2 and CYP2E1 expression in rat. J Biochem Mol Toxicol 21:41–50. https://doi.org/10.1002/jbt.20156

    Article  CAS  PubMed  Google Scholar 

  180. Saghir SA, Khan SA, McCoy AT (2012) Ontogeny of mammalian metabolizing enzymes in humans and animals used in toxicological studies. Crit Rev Toxicol 42:323–357. https://doi.org/10.3109/10408444.2012.674100

    Article  CAS  PubMed  Google Scholar 

  181. de Zwart L, Scholten M, Monbaliu JG et al (2008) The ontogeny of drug metabolizing enzymes and transporters in the rat. Reprod Toxicol 26:220–230. https://doi.org/10.1016/j.reprotox.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  182. Millecam J, De Clerck L, Govaert E et al (2018) The ontogeny of cytochrome P450 enzyme activity and protein abundance in conventional pigs in support of preclinical pediatric drug research. Front Pharmacol 9:470. https://doi.org/10.3389/fphar.2018.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chu X, Liao M, Shen H et al (2018) Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the international transporter consortium. Clin Pharmacol Ther 104:836–864. https://doi.org/10.1002/cpt.1216

    Article  CAS  PubMed  Google Scholar 

  184. Rowland A, Ruanglertboon W, Dyk M et al (2019) Plasma extracellular nanovesicle (exosome)-derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. Br J Clin Pharmacol 85:216–226. https://doi.org/10.1111/bcp.13793

    Article  CAS  PubMed  Google Scholar 

  185. Ladumor MK, Thakur A, Sharma S et al (2019) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation. Sci Rep 9:1–16. https://doi.org/10.1038/s41598-019-45778-9

    Article  CAS  Google Scholar 

  186. Tateishi T, Nakura H, Asoh M et al (1997) A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 61:2567–2574. https://doi.org/10.1016/s0024-3205(97)01011-4

    Article  CAS  PubMed  Google Scholar 

  187. Migoya E, Kearns GL, Hartford A et al (2004) Pharmacokinetics of montelukast in asthmatic patients 6 to 24 months old. J Clin Pharmacol 44:487–494. https://doi.org/10.1177/0091270004264970

    Article  CAS  PubMed  Google Scholar 

  188. Chang M, Tybring G, Dahl ML et al (1995) Interphenotype differences in disposition and effect on gastrin levels of omeprazole-suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 39:511–518. https://doi.org/10.1111/j.1365-2125.1995.tb04488.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet 41:1077–1094. https://doi.org/10.2165/00003088-200241130-00005

    Article  CAS  PubMed  Google Scholar 

  190. Schmidt B, Roberts RS, Davis P et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354:2112–2121. https://doi.org/10.1056/NEJMoa054065

    Article  CAS  PubMed  Google Scholar 

  191. Luzuriaga K, Bryson Y, McSherry G et al (1996) Pharmacokinetics, safety, and activity of nevirapine in human immunodeficiency virus type 1-infected children. J Infect Dis 174:713–721. https://doi.org/10.1093/infdis/174.4.713

    Article  CAS  PubMed  Google Scholar 

  192. Saitoh A, Sarles E, Capparelli E et al (2007) CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS 21:2191–2199. https://doi.org/10.1097/QAD.0b013e3282ef9695

    Article  CAS  PubMed  Google Scholar 

  193. Dempsey D, Jacob P III, Benowitz NL (2000) Nicotine metabolism and elimination kinetics in newborns. Clin Pharmacol Ther 67:458–465. https://doi.org/10.1067/mcp.2000.106129

    Article  CAS  PubMed  Google Scholar 

  194. Fennema D, Phillips IR, Shephard EA (2016) Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44:1839–1850. https://doi.org/10.1124/dmd.116.070615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chalmers RA, Bain MD, Michelakakis H et al (2006) Diagnosis and management of trimethylaminuria (FMO3 deficiency) in children. J Inherit Metab Dis 29:162–172. https://doi.org/10.1007/s10545-006-0158-6

    Article  CAS  PubMed  Google Scholar 

  196. Pacifici GM, Rane A (1983) Epoxide hydrolase in human fetal liver. Pharmacology 26:241–248. https://doi.org/10.1159/000137807

    Article  CAS  PubMed  Google Scholar 

  197. Omiecinski CJ, Aicher L, Swenson L (1994) Developmental expression of human microsomal epoxide hydrolase. J Pharmacol Exp Ther 269:417–423

    CAS  PubMed  Google Scholar 

  198. Costa LG, Li WF, Richter RJ et al (1999) The role of paraoxonase (PON1) in the detoxication of organophosphates and its human polymorphism. Chem Biol Interact 119:429–438. https://doi.org/10.1016/s0009-2797(99)00055-1

    Article  PubMed  Google Scholar 

  199. Court MH, Zhang X, Ding X et al (2012) Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 42:266–277. https://doi.org/10.3109/00498254.2011.618954

    Article  CAS  PubMed  Google Scholar 

  200. Mahone PR, Scott K, Sleggs G et al (1994) Cocaine and metabolites in amniotic fluid may prolong fetal drug exposure. Am J Obstet Gynecol 171:465–469. https://doi.org/10.1016/0002-9378(94)90284-4

    Article  CAS  PubMed  Google Scholar 

  201. Chen C, Casale EJ, Duncan B et al (1999) Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy 19:437–441. https://doi.org/10.1592/phco.19.6.437.31052

    Article  PubMed  Google Scholar 

  202. Miyagi SJ, Milne AM, Coughtrie MWH et al (2012) Neonatal development of hepatic UGT1A9: implications of pediatric pharmacokinetics. Drug Metab Dispos 40:1321–1327. https://doi.org/10.1124/dmd.111.043752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jones RDM, Chan K, Andrew LJ (1990) Pharmacokinetics of propofol in children. Br J Anaesth 65:661–667. https://doi.org/10.1007/s40263-015-0259-6

    Article  CAS  PubMed  Google Scholar 

  204. Ko K, Kurogi K, Davidson G et al (2012) Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases. J Biochem 152:275–283. https://doi.org/10.1093/jb/mvs073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miki Y, Nakata T, Suzuki T et al (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87:5760–5768. https://doi.org/10.1210/jc.2002-020670

    Article  CAS  PubMed  Google Scholar 

  206. Senggunprai L, Yoshinari K, Yamazoe Y (2009) Selective role of sulfotransferase 2A1 (SULT2A1) in the N-sulfoconjugation of quinolone drugs in humans. Drug Metab Dispos 37:1711–1717. https://doi.org/10.1124/dmd.109.027441

    Article  CAS  PubMed  Google Scholar 

  207. Fraser AD, Bryan W, Isner AF (1991) Urinary screening for midazolam and its major metabolites with the Abbott ADx and TDx analyzers and the EMIT d.a.u. benzodiazepine assay with confirmation by GC/MS. J Anal Toxicol 15:8–12. https://doi.org/10.1093/jat/15.1.8

    Article  CAS  PubMed  Google Scholar 

  208. Kulo A, Peeters MY, Allegaert K et al (2013) Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum. Br J Clin Pharmacol 75:850–860. https://doi.org/10.1111/j.1365-2125.2012.04402.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ginsberg G, Hattis D, Russ A et al (2004) Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxicol Environ Health 67:297–329. https://doi.org/10.1080/15287390490273550

    Article  CAS  Google Scholar 

  210. Agbaba D, Pokrajac M, Varagić VM et al (1990) Dependence of the renal excretion of theophylline on its plasma concentrations and urine flow rate in asthmatic children. J Pharm Pharmacol 42:827–830. https://doi.org/10.1111/j.2042-7158.1990.tb07034.x

    Article  CAS  PubMed  Google Scholar 

  211. Jenner PJ, Ellard GA, Gruer PJ et al (1984) A comparison of the blood levels and urinary excretion of ethionamide and prothionamide in man. J Antimicrob Chemother 13:267–277. https://doi.org/10.1093/jac/13.3.267

    Article  CAS  PubMed  Google Scholar 

  212. Verbeeck R, Tjandramaga TB, Verberckmoes R et al (1976) Biotransformation and excretion of lorazepam in patients with chronic renal failure. Br J Clin Pharmacol 3:1033–1039. https://doi.org/10.1111/j.1365-2125.1976.tb00354.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gomila I, Barceló B, Rosell A et al (2017) Cross-reactivity of pantoprazole with three commercial cannabinoids immunoassays in urine. J Anal Toxicol 41:760–764. https://doi.org/10.1093/jat/bkx047

    Article  CAS  PubMed  Google Scholar 

  214. Sousa M, Pozniak A, Boffito M (2008) Pharmacokinetics and pharmacodynamics of drug interactions involving rifampicin, rifabutin and antimalarial drugs. J Antimicrob Chemother 62:872–878. https://doi.org/10.1093/jac/dkn330

    Article  CAS  PubMed  Google Scholar 

  215. Diestelhorst C, Boos J, McCune JS et al (2014) Predictive performance of a physiologically based pharmacokinetic model of busulfan in children. Pediatr Hematol Oncol J 31:731–742. https://doi.org/10.3109/08880018.2014.927945

    Article  CAS  Google Scholar 

  216. Hassan M, Oberg G, Ehrsson H et al (1989) Pharmacokinetic and metabolic studies of high-dose busulphan in adults. Eur J Clin Pharmacol 36:525–530. https://doi.org/10.1007/BF00558081

    Article  CAS  PubMed  Google Scholar 

  217. Adiwidjaja J, Boddy AV, McLachlan AJ (2020) Implementation of a physiologically based pharmacokinetic modeling approach to guide optimal dosing regimens for imatinib and potential drug interactions in paediatrics. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.01672

  218. Di Gion P, Kanefendt F, Lindauer A et al (2011) Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet 50:551–603. https://doi.org/10.2165/11593320-000000000-00000

    Article  PubMed  Google Scholar 

  219. Conner TM, Reed RC, Zhang T (2019) A physiologically based pharmacokinetic model for optimally profiling lamotrigine disposition and drug–drug interactions. Eur J Drug Metab Pharmacokinet 44:389–408. https://doi.org/10.1007/s13318-018-0532-4

    Article  CAS  PubMed  Google Scholar 

  220. Posner J, Cohen AF, Land G et al (1989) The pharmacokinetics of lamotrigine (BW430C) in healthy subjects with unconjugated hyperbilirubinaemia (Gilbert’s syndrome). Br J Clin Pharmacol 28:117–120. https://doi.org/10.1111/j.1365-2125.1989.tb03514.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Johnson TN, Zhou D, Bui KH (2014) Development of physiologically based pharmacokinetic model to evaluate the relative systemic exposure to quetiapine after administration of IR and XR formulations to adults, children and adolescents. Biopharm Drug Dispos 35:341–352. https://doi.org/10.1002/bdd.1899

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

B.P. and M.M.P. were supported by the National Institutes of Health (NIH) grant (R01 HD081299).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Steven Leeder or Bhagwat Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thakur, A., Parvez, M.M., Leeder, J.S., Prasad, B. (2021). Ontogeny of Drug-Metabolizing Enzymes. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics