Skip to main content

Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification

  • Protocol
  • First Online:
Modeling Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

Gene expression data analysis and the prediction of causal relationships within gene regulatory networks (GRNs) have guided the identification of key regulatory factors and unraveled the dynamic properties of biological systems. However, drawing accurate and unbiased conclusions requires a comprehensive understanding of relevant tools, computational methods, and their workflows. The topics covered in this chapter encompass the entire workflow for GRN inference including: (1) experimental design; (2) RNA sequencing data processing; (3) differentially expressed gene (DEG) selection; (4) clustering prior to inference; (5) network inference techniques; and (6) network visualization and analysis. Moreover, this chapter aims to present a workflow feasible and accessible for plant biologists without a bioinformatics or computer science background. To address this need, TuxNet, a user-friendly graphical user interface that integrates RNA sequencing data analysis with GRN inference, is chosen for the purpose of providing a detailed tutorial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  Google Scholar 

  2. Vermeirssen V, De Clercq I, Van Parys T et al (2014) Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress. Plant Cell 26:4656–4679

    Article  CAS  Google Scholar 

  3. Miao Z, Xu W, Li D et al (2015) De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics 16:818

    Article  Google Scholar 

  4. Luo H, Zhao W, Wang Y et al (2016) SorGSD: a sorghum genome SNP database. Biotechnol Biofuels 9:6

    Article  Google Scholar 

  5. Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(Suppl 6):S9

    Article  Google Scholar 

  6. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  7. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  Google Scholar 

  8. de Luis Balaguer MA, Fisher AP, Clark NM et al (2017) Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl Acad Sci U S A 114:E7632–E7640

    Article  Google Scholar 

  9. Spurney RJ, Van den Broeck L, Clark NM et al (2020) Tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks. Plant J 101:716–730

    Article  CAS  Google Scholar 

  10. Clark NM, Buckner E, Fisher AP et al (2019) Stem-cell-ubiquitous genes spatiotemporally coordinate division through regulation of stem-cell-specific gene networks. Nat Commun 10:5574

    Article  CAS  Google Scholar 

  11. Ó’Maoiléidigh DS, Thomson B, Raganelli A et al (2015) Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations. Plant J 83:344–358

    Article  Google Scholar 

  12. Nelissen H, Gonzalez N, Inzé D (2016) Leaf growth in dicots and monocots: so different yet so alike. Curr Opin Plant Biol 33:72–76

    Article  Google Scholar 

  13. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One 5:e12776. https://doi.org/10.1371/journal.pone.0012776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levesque MP, Vernoux T, Busch W et al (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143

    Article  Google Scholar 

  15. Moreno-Risueno MA, Sozzani R, Yardımcı GG et al (2015) Transcriptional control of tissue formation throughout root development. Science 350:426–430

    Article  CAS  Google Scholar 

  16. Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

    Article  CAS  Google Scholar 

  17. Welch D, Hassan H, Blilou I et al (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev 21:2196–2204

    Article  CAS  Google Scholar 

  18. Ogasawara H, Kaimi R, Colasanti J, Kozaki A (2011) Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. Plant Mol Biol 77:489–499

    Article  CAS  Google Scholar 

  19. Long Y, Smet W, Cruz-Ramírez A et al (2015) Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27:1185–1199

    Article  CAS  Google Scholar 

  20. Lopes CT, Franz M, Kazi F et al (2010) Cytoscape web: an interactive web-based network browser. Bioinformatics 26:2347–2348

    Article  CAS  Google Scholar 

  21. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  Google Scholar 

  22. Su G, Morris JH, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics 47:8.13.1–8.1324

    Article  Google Scholar 

  23. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  24. Hu Z, Mellor J, Wu J et al (2005) VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Res 33:W352–W357

    Article  CAS  Google Scholar 

  25. Rinnone F, Micale G, Bonnici V et al (2015) NetMatchStar: an enhanced Cytoscape network querying app. F1000Res 4:479

    Article  Google Scholar 

  26. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  27. Krouk G, Lingeman J, Colon AM et al (2013) Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol 14:123

    Article  Google Scholar 

  28. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  29. Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinforma J 7:1–8

    Article  Google Scholar 

  30. ea-utils by ExpressionAnalysis. https://expressionanalysis.github.io/ea-utils/. Accessed 30 Apr 2020

  31. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  Google Scholar 

  32. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578

    Article  CAS  Google Scholar 

  33. Conant GC, Wagner A (2003) Convergent evolution of gene circuits. Nat Genet 34:264–266

    Article  CAS  Google Scholar 

  34. Boyle AP, Araya CL, Brdlik C et al (2014) Comparative analysis of regulatory information and circuits across distant species. Nature 512:453–456

    Article  CAS  Google Scholar 

  35. Kitchen JL, Allaby RG (2013) Systems modeling at multiple levels of regulation: linking systems and genetic networks to spatially explicit plant populations. Plan Theory 2:16–49

    Google Scholar 

Download references

Acknowledgement

Support for this work was provided to R.S. by the National Science Foundation (NSF) (CAREER MCB-1453130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosangela Sozzani or Lisa Van den Broeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spurney, R., Schwartz, M., Gobble, M., Sozzani, R., Van den Broeck, L. (2021). Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics