Skip to main content

Cytotoxic T Lymphocytes (CTLs) and Kidney Transplantation: An Overview

  • Protocol
  • First Online:
Cytotoxic T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2325))

Abstract

Involvement of T lymphocytes in kidney transplantation is a well-developed topic; however, most of the scientific interest focused on the different type of CD4+ lymphocyte subpopulations. Few authors, instead, investigated the role of CD8+ T cells in renal transplantation and how deleterious they can be to long-term allograft survival. Recently, there has been a renewed interest in the CD8+ T cells involvement in the transplantation field with the aim to investigate the immunological mechanisms underlying the infiltration of CD8+ T cells and their biological functions in human kidney allografts. The purpose of the present review is to highlight the role of allo-reactive cytotoxic T lymphocytes (CTLs) CD8+ subset in allograft kidney recipients and their related clinical complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marino J, Paster J, Benichou G (2016) Allorecognition by T lymphocytes and allograft rejection. Front Immunol 7:582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Betjes MG, Meijers RW, de Wit EA et al (2012) Terminally differentiated CD8+ Temra cells are associated with the risk for acute kidney allograft rejection. Transplantation 94(1):63–69

    Article  CAS  PubMed  Google Scholar 

  3. Yap M, Brouard S, Pecqueur C et al (2015) Targeting CD8 T-cell metabolism in transplantation. Front Immunol 6:547

    PubMed  PubMed Central  Google Scholar 

  4. Baeten D, Louis S, Braud C et al (2006) Phenotypically and functionally distinct CD8+ lymphocyte populations in long-term drug-free tolerance and chronic rejection in human kidney graft recipients. J Am Soc Nephrol 17:294–304

    Article  CAS  PubMed  Google Scholar 

  5. San Segundo D, Ballesteros MÁ, Naranjo S et al (2013) Increased numbers of circulating CD8 effector memory T cells before transplantation enhance the risk of acute rejection in lung transplant recipients. PLoS One 8(11):e80601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ordonez L, Bernard I, Chabod M et al (2013) A higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients’ CD8 T cells. PLoS One 8(7):e69791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yap M, Boeffard F, Clave E et al (2014) Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kidney transplant recipients: a potential marker for late graft dysfunction. J Am Soc Nephrol 25(8):1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koyama I, Nadazdin O, Boskovic S et al (2007) Depletion of CD8 memory T cells for induction of tolerance of a previously transplanted kidney allograft. Am J Transplant. 7(5):1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bueno V, Pestana JO (2002) The role of CD8+ T cells during allograft rejection. Braz J Med Biol Res 35(11):1247–1258

    Article  CAS  PubMed  Google Scholar 

  10. Clambey ET, Davenport B, Kappler JW et al (2014) Molecules in medicine mini review: the αβ T cell receptor. J Mol Med (Berl). 92(7):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17(4):616–623

    Article  CAS  PubMed  Google Scholar 

  12. Shen J, Xiao Z, Zhao Q et al (2018) Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 51(4):e12441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mojic M, Takeda K, Hayakawa Y (2017) The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci 19(1):89

    Article  PubMed Central  CAS  Google Scholar 

  14. Zhang B, Karrison T, Rowley DA et al (2008) IFN- gamma- and TNF- dependent bystander eradication of antigen- loss variants in established mouse cancers. J Clin Invest. 118:1398–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan S, Thomas PG (2016) Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front Immunol 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brummelman J, Pilipow K, Lugli E (2018) The single-cell phenotypic identity of human CD8(+) and CD4(+) T cells. Int Rev Cell Mol Biol 341:63–124

    Article  CAS  PubMed  Google Scholar 

  17. Qin Y, Oh S, Lim S et al (2019) Invariant NKT cells facilitate cytotoxic T-cell activation via direct recognition of CD1d on T cells. Exp Mol Med 51(10):126

    Article  PubMed Central  CAS  Google Scholar 

  18. Howie D, Ten Bokum A, Necula AS et al (2018) The role of lipid metabolism in T lymphocyte differentiation and survival. Front Immunol 8:1949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He S, Kato K, Jiang J et al (2011) Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS One 6(5):e20107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Resh MD (2013) Covalent lipid modifications of proteins. Curr Biol 23(10):R431–R435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Almeida L, Lochner M, Berod L et al (2016) Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28(5):514–524

    Article  CAS  PubMed  Google Scholar 

  23. Rampoldi F, Bonrouhi M, Boehm ME et al (2015) Immunosuppression and aberrant T cell development in the absence of n-myristoylation. J Immunol 195(9):4228–4243

    Article  CAS  PubMed  Google Scholar 

  24. Hukelmann JL, Anderson KE, Sinclair LV et al (2016) The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol 17(1):104–112

    Article  CAS  PubMed  Google Scholar 

  25. Siu JHY, Surendrakumar V, Richards JA et al (2018) T cell allorecognition pathways in solid organ transplantation. Front Immunol 9:2548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Smyth LA, Lechler RI, Lombardi G (2017) Continuous acquisition of MHC:peptide complexes by recipient cells contributes to the generation of anti-graft CD8(+) t cell immunity. Am J Transplant 17(1):60–68

    Article  CAS  PubMed  Google Scholar 

  27. Harper SJ, Ali JM, Wlodek E et al (2015) CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc Natl Acad Sci U S A 112(41):12788–12793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taylor AL, Negus SL, Negus M et al (2007) Pathways of helper CD4 T cell allorecognition in generating alloantibody and CD8 T cell alloimmunity. Transplantation 83(7):931–937

    Article  PubMed  Google Scholar 

  29. Loupy A, Haas M, Solez K et al (2017) The Banff 2015 kidney meeting report: current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant 17:28–41

    Article  CAS  PubMed  Google Scholar 

  30. Hu M, Wang C, Zhang GY et al (2013) Infiltrating Foxp3(+) regulatory T cells from spontaneously tolerant kidney allografts demonstrate donor-specific tolerance. Am J Transplant 13:2819–2830

    Article  CAS  PubMed  Google Scholar 

  31. Rascio F, Divella C, Grandaliano G (2014) CTL and transplantation: tissue in vivo characterization. Methods Mol Biol 1186:283–294

    Article  PubMed  Google Scholar 

  32. Wagrowska-Danilewicz M, Danilewicz M (2003) Immunoexpression of perforin and granzyme B on infiltrating lymphocytes in human renal acute allograft rejection. Nefrologia 23:538–544

    CAS  PubMed  Google Scholar 

  33. Mengel M, Mueller I, Behrend M et al (2004) Prognostic value of cytotoxic T-lymphocytes and CD40 in biopsies with early renal allograft rejection. Transpl Int 17:293–300

    Article  PubMed  Google Scholar 

  34. Salcido-Ochoa F, Hue SS, Peng S et al (2017) Histopathological analysis of infiltrating T cell subsets in acute T cell-mediated rejection in the kidney transplant. World J Transplant 7(4):222–234

    Article  PubMed  PubMed Central  Google Scholar 

  35. DeWolf S, Sykes M (2017) Alloimmune T cells in transplantation. J Clin Invest 127(7):2473–2481

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hidalgo LG, Einecke G, Allanach K et al (2008) The transcriptome of human cytotoxic T cells: measuring the burden of CTL-associated transcripts in human kidney transplants. Am J Transplant 8:637–646

    Article  CAS  PubMed  Google Scholar 

  37. von Andrian UH, MacKay CR (2000) Advances in immunology: T-cell function and migration—Two sides of the same coin. N Engl J Med 343:1020–1033

    Article  Google Scholar 

  38. Willinger T, Freeman T, Hasegawa H et al (2005) Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol 175:5895–5903

    Article  CAS  PubMed  Google Scholar 

  39. Szabo SJ, Kim ST, Costa GL et al (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  CAS  PubMed  Google Scholar 

  40. Hidalgo LG, Einecke G, Allanach K et al (2008) The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4+ CTL, CD8+ CTL and NK cells. Am J Transplant 8:627–636

    Article  CAS  PubMed  Google Scholar 

  41. Obata-Onai A, Hashimoto S, Onai N et al (2002) Comprehensive gene expression analysis of human NK cells and CD8(+) T lymphocytes. Int Immunol 14:1085–1098

    Article  CAS  PubMed  Google Scholar 

  42. Carstens J, Ozbay A, Tørring C et al (2009) Intragraft mRNA cytotoxic molecule expression in renal allograft recipients. Transpl Immunol 20(4):212–217

    Article  CAS  PubMed  Google Scholar 

  43. Mueller TF, Einecke G, Reeve J et al (2007) Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am J Transplant 7:2712–2722

    Article  CAS  PubMed  Google Scholar 

  44. Desvaux D, Schwarzinger M, Pastural M et al (2004) Molecular diagnosis of renal-allograft rejection: correlation with histopathologic evaluation and anti-rejection-therapy resistance. Transplantation 78:647

    Article  CAS  PubMed  Google Scholar 

  45. Jonuleit H, Schmitt E (2003) The regulatory T cell family: distinct subsets and their interrelations. J Immunol 171:6323

    Article  CAS  PubMed  Google Scholar 

  46. Walsh PT, Taylor DK, Turka LA (2004) Tregs and transplantation tolerance. J Clin Invest 114:1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaminska D, Tyran B, Mazanowska O et al (2005) Intragraft mRNA expression of cytokines and growth factors in human kidney allograft biopsies by in situ RT-PCR analysis. Transplant Proc 37:767

    Article  CAS  PubMed  Google Scholar 

  48. Hribova P, Kotsch K, Brabcova I et al (2005) Cytokines and chemokine gene expression in human kidney transplantation. Transplant Proc 37:760

    Article  CAS  PubMed  Google Scholar 

  49. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102:18538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grimbert P, Mansour H, Desvaux D et al (2007) The regulatory/cytotoxic graft-infiltrating T cells differentiate renal allograft borderline change from acute rejection. Transplantation 83(3):341–346

    Article  CAS  PubMed  Google Scholar 

  51. Stallone G, Infante B, Grandaliano G (2015) Management and prevention of post-transplant malignancies in kidney transplant recipients. Clin Kidney J 8(5):637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Priyadharshini B, Greiner DL, Brehm MA (2012) T-cell activation and transplantation tolerance. Transplant Rev (Orlando) 26(3):212–222

    Article  Google Scholar 

  53. Wekerle T, Blaha P, Koporc Z et al (2003) Mechanisms of tolerance induction through the transplantation of donor hematopoietic stem cells: central versus peripheral tolerance. Transplantation 75:21S–25S

    Article  PubMed  Google Scholar 

  54. Arnold B (2002) Levels of peripheral T cell tolerance. Transpl Immunol 10:109–114

    Article  CAS  PubMed  Google Scholar 

  55. Dillinger B, Ahmadi-Erber S, Soukup K, al e (2017) CD28 blockade ex vivo induces alloantigen-specific immune tolerance but preserves T-cell pathogen reactivity. Front Immunol 8:1152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Süsal C, Döhler B, Ruhenstroth A et al (2016) A collaborative transplant study report: donor-specific antibodies require preactivated immune system to harm renal transplant. EBioMedicine 9:366–371

    Article  PubMed  PubMed Central  Google Scholar 

  57. Terzieva V, Mihova A, Altankova I et al (2019) The dynamic changes in soluble CD30 and regulatory T cells before and after solid organ transplantations: a pilot study. Monoclon Antib Immunodiagn Immunother 38(4):137–144

    Article  CAS  PubMed  Google Scholar 

  58. Dai Z, Li Q, Wang Y, Gao G et al (2004) CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 113(2):310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang J, Brook MO, Carvalho-Gaspar M et al (2007) Allograft rejection mediated by memory T cells is resistant to regulation. Proc Natl Acad Sci U S A 104(50):19954–19959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Issa F, Schiopu A, Wood KJ (2010) Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol 6(1):155–169

    Article  CAS  PubMed  Google Scholar 

  61. Grimbert P, Audard V, Diet C et al (2011) T-cell phenotype in protocol renal biopsy from transplant recipients treated with belatacept-mediated co-stimulatory blockade. Nephrol Dial Transplant 26(3):1087–1093

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rascio, F., Pontrelli, P., Grandaliano, G. (2021). Cytotoxic T Lymphocytes (CTLs) and Kidney Transplantation: An Overview. In: Gigante, M., Ranieri, E. (eds) Cytotoxic T-Cells. Methods in Molecular Biology, vol 2325. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1507-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1507-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1506-5

  • Online ISBN: 978-1-0716-1507-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics