Skip to main content

A Multistress Model for High Throughput Screening Against Nonreplicating Mycobacterium tuberculosis

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

Models of nonreplication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against nonreplicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states and to development of drugs that can overcome phenotypic resistance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multistress model of nonreplication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide, and other reactive nitrogen intermediates arising from nitrite at low pH and low concentrations of a fatty acid (butyrate) as a carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4(140):140–142. https://doi.org/10.1126/scitranslmed.3003081

    Article  CAS  Google Scholar 

  2. Gold B, Nathan C (2017) Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiol Spectr 5(1). https://doi.org/10.1128/microbiolspec.TBTB2-0031-2016

  3. Nathan C (2017) Kunkel lecture: fundamental immunodeficiency and its correction. J Exp Med 214(8):2175–2191. https://doi.org/10.1084/jem.20170637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nathan C, Barry CE 3rd (2015) TB drug development: immunology at the table. Immunol Rev 264(1):308–318. https://doi.org/10.1111/imr.12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C (2008) Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3(3):137–145. https://doi.org/10.1016/j.chom.2008.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, Blackburn C, Gigstad K, Sintchak M, Dick L, Nathan C (2013) N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc 135(27):9968–9971. https://doi.org/10.1021/ja400021x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin G, Li D, de Carvalho LP, Deng H, Tao H, Vogt G, Wu K, Schneider J, Chidawanyika T, Warren JD, Li H, Nathan C (2009) Inhibitors selective for mycobacterial versus human proteasomes. Nature 461(7264):621–626. https://doi.org/10.1038/nature08357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nathan C, Gold B, Lin G, Stegman M, de Carvalho LP, Vandal O, Venugopal A, Bryk R (2008) A philosophy of anti-infectives as a guide in the search for new drugs for tuberculosis. Tuberculosis (Edinb) 88(Suppl 1):S25–S33. https://doi.org/10.1016/S1472-9792(08)70034-9

    Article  CAS  Google Scholar 

  9. Lopez Quezada L, Silve S, Kelinske M, Liba A, Diaz Gonzalez C, Kotev M, Goullieux L, Sans S, Roubert C, Lagrange S, Bacque E, Couturier C, Pellet A, Blanc I, Ferron M, Debu F, Li K, Aube J, Roberts J, Little D, Ling Y, Zhang J, Gold B, Nathan C (2019) Bactericidal disruption of magnesium metallostasis in Mycobacterium tuberculosis is counteracted by mutations in the metal ion transporter CorA. MBio 10(4). https://doi.org/10.1128/mBio.01405-19

  10. Lopez Quezada L, Li K, McDonald SL, Nguyen Q, Perkowski AJ, Pharr CW, Gold B, Roberts J, McAulay K, Saito K, Somersan Karakaya S, Javidnia PE, Porras de Francisco E, Amieva MM, Di Az SP, Mendoza Losana A, Zimmerman M, Liang HH, Zhang J, Dartois V, Sans S, Lagrange S, Goullieux L, Roubert C, Nathan C, Aube J (2019) Dual-pharmacophore pyrithione-containing cephalosporins kill both replicating and nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 5(8):1433–1445. https://doi.org/10.1021/acsinfecdis.9b00112

    Article  CAS  PubMed  Google Scholar 

  11. Grant SS, Kawate T, Nag PP, Silvis MR, Gordon K, Stanley SA, Kazyanskaya E, Nietupski R, Golas A, Fitzgerald M, Cho S, Franzblau SG, Hung DT (2013) Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem Biol 8(10):2224–2234. https://doi.org/10.1021/cb4004817

    Article  CAS  PubMed  Google Scholar 

  12. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, Ng SH, Tan BH, Cherian J, Duraiswamy J, Bifani P, Lim V, Lee BH, Ling Ma N, Beer D, Thayalan P, Kuhen K, Chatterjee A, Supek F, Glynne R, Zheng J, Boshoff HI, Barry CE 3rd, Dick T, Pethe K, Camacho LR (2012) A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 7(7):1190–1197. https://doi.org/10.1021/cb2004884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loebel RO, Shorr E, Richardson HB (1933) The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26(2):139–166

    Article  CAS  Google Scholar 

  14. Loebel RO, Shorr E, Richardson HB (1933) The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26(2):167–200

    Article  CAS  Google Scholar 

  15. Nyka W (1974) Studies on the effect of starvation on mycobacteria. Infect Immun 9(5):843–850

    Article  CAS  Google Scholar 

  16. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731

    Article  CAS  Google Scholar 

  17. Gengenbacher M, Rao SP, Pethe K, Dick T (2010) Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156(Pt 1):81–87. https://doi.org/10.1099/mic.0.033084-0

    Article  CAS  PubMed  Google Scholar 

  18. Xie Z, Siddiqi N, Rubin EJ (2005) Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49(11):4778–4780. https://doi.org/10.1128/AAC.49.11.4778-4780.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13(11):908–914

    Article  CAS  Google Scholar 

  20. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069

    Article  CAS  Google Scholar 

  21. Wayne LG, Sramek HA (1994) Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38(9):2054–2058

    Article  CAS  Google Scholar 

  22. Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323(5918):1215–1218. https://doi.org/10.1126/science.1167498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE 3rd (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76(6):2333–2340. https://doi.org/10.1128/IAI.01515-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brooks JV, Furney SK, Orme IM (1999) Metronidazole therapy in mice infected with tuberculosis. Antimicrob Agents Chemother 43(5):1285–1288

    Article  CAS  Google Scholar 

  25. Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, Klein E, Barry CE 3rd, Flynn JL (2012) Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci U S A 109(35):14188–14193. https://doi.org/10.1073/pnas.1121497109

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoff DR, Caraway ML, Brooks EJ, Driver ER, Ryan GJ, Peloquin CA, Orme IM, Basaraba RJ, Lenaerts AJ (2008) Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 52(11):4137–4140. https://doi.org/10.1128/AAC.00196-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, Lee M, Lee J, Via LE, Lee S, Eum SY, Lee SJ, Goldfeder LC, Cai Y, Jin B, Kim Y, Oh T, Chen RY, Dodd LE, Gu W, Dartois V, Park SK, Kim CT, Barry CE 3rd, Cho SN (2013) Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother 57(8):3903–3909. https://doi.org/10.1128/AAC.00753-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1(11):895–910. https://doi.org/10.1038/nrd940

    Article  CAS  PubMed  Google Scholar 

  29. Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105(33):11945–11950. https://doi.org/10.1073/pnas.0711697105

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51(4):1380–1385. https://doi.org/10.1128/AAC.00055-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gold B, Roberts J, Ling Y, Quezada LL, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Warren JD, Nathan C (2015) Rapid, semiquantitative assay to discriminate among compounds with activity against replicating or nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(10):6521–6538. https://doi.org/10.1128/AAC.00803-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gold B, Roberts J, Ling Y, Lopez Quezada L, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Nathan C (2016) Visualization of the charcoal agar resazurin assay for semi-quantitative, medium-throughput enumeration of mycobacteria. J Vis Exp (118). https://doi.org/10.3791/54690

  33. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302(5645):654–659

    Article  CAS  Google Scholar 

  34. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94(10):5243–5248

    Article  CAS  Google Scholar 

  35. Cunningham-Bussel A, Zhang T, Nathan CF (2013) Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci U S A 110(45):E4256–E4265. https://doi.org/10.1073/pnas.1316894110

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, Bange FC, Ehlers S (2006) Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210(3):298–305. https://doi.org/10.1002/path.2055

    Article  CAS  PubMed  Google Scholar 

  37. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107(21):9819–9824. https://doi.org/10.1073/pnas.1000715107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Munoz-Elias EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11(6):638–644. https://doi.org/10.1038/nm1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42(3):851–865. https://doi.org/10.1046/j.1365-2958.2001.02684.x

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70(7):3371–3381. https://doi.org/10.1128/iai.70.7.3371-3381.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100(24):14321–14326. https://doi.org/10.1073/pnas.2436197100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60(2):312–330. https://doi.org/10.1111/j.1365-2958.2006.05102.x

    Article  CAS  PubMed  Google Scholar 

  43. Hondalus MK, Bardarov S, Russell R, Chan J, Jacobs WR Jr, Bloom BR (2000) Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun 68(5):2888–2898

    Article  CAS  Google Scholar 

  44. Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr (2002) A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8(10):1171–1174. https://doi.org/10.1038/nm765

    Article  CAS  PubMed  Google Scholar 

  45. Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4(10):609–616. https://doi.org/10.1038/nchembio.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. mBio 5(1). https://doi.org/10.1128/mBio.00876-13

  47. Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD (2004) Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52(5):1291–1302. https://doi.org/10.1111/j.1365-2958.2004.04078.x

    Article  CAS  PubMed  Google Scholar 

  48. Shiloh MU, Manzanillo P, Cox JS (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3(5):323–330. https://doi.org/10.1016/j.chom.2008.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gold B, Pingle M, Brickner SJ, Shah N, Roberts J, Rundell M, Bracken WC, Warrier T, Somersan S, Venugopal A, Darby C, Jiang X, Warren JD, Fernandez J, Ouerfelli O, Nuermberger EL, Cunningham-Bussel A, Rath P, Chidawanyika T, Deng H, Realubit R, Glickman JF, Nathan CF (2012) Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials. Proc Natl Acad Sci U S A 109(40):16004–16011. https://doi.org/10.1073/pnas.1214188109

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aube J (2016) Novel cephalosporins selectively active on nonreplicating Mycobacterium tuberculosis. J Med Chem 59(13):6027–6044. https://doi.org/10.1021/acs.jmedchem.5b01833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warrier T, Martinez-Hoyos M, Marin-Amieva M, Colmenarejo G, Porras-De Francisco E, Alvarez-Pedraglio AI, Fraile-Gabaldon MT, Torres-Gomez PA, Lopez-Quezada L, Gold B, Roberts J, Ling Y, Somersan-Karakaya S, Little D, Cammack N, Nathan C, Mendoza-Losana A (2015) Identification of novel anti-mycobacterial compounds by screening a pharmaceutical small-molecule library against nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 1(12):580–585. https://doi.org/10.1021/acsinfecdis.5b00025

    Article  CAS  PubMed  Google Scholar 

  52. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198(5):693–704. https://doi.org/10.1084/jem.20030846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng P, Somersan-Karakaya S, Lu S, Roberts J, Pingle M, Warrier T, Little D, Guo X, Brickner SJ, Nathan CF, Gold B, Liu G (2014) Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 57(9):3755–3772. https://doi.org/10.1021/jm4019228

    Article  CAS  PubMed  Google Scholar 

  54. Saito K, Warrier T, Somersan-Karakaya S, Kaminski L, Mi J, Jiang X, Park S, Shigyo K, Gold B, Roberts J, Weber E, Jacobs WR Jr, Nathan CF (2017) Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 114(24):E4832–E4840. https://doi.org/10.1073/pnas.1705385114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chengalroyen MD, Beukes GM, Gordhan BG, Streicher EM, Churchyard G, Hafner R, Warren R, Otwombe K, Martinson N, Kana BD (2016) Detection and quantification of differentially culturable tubercle bacteria in sputum from patients with tuberculosis. Am J Respir Crit Care Med 194(12):1532–1540. https://doi.org/10.1164/rccm.201604-0769OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Collins L, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009

    Article  CAS  Google Scholar 

  57. Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ (2012) Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 92(6):453–488. https://doi.org/10.1016/j.tube.2012.07.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful for the numerous contributions toward the development of the nonreplicating assay and critical reading of this chapter: Julia Roberts, Yan Ling, Selin Somersan-Karakaya, Landys Lopez-Quezada, David Little, Maneesh Pingle, Kristin Burns-Huang (Weill Cornell Medical College, NY, USA) and Alfonso Mendoza-Losana, Maria Martinez-Hoyos, and Manuel Marin-Amieva (GSK, Tres Cantos, Spain). This work was supported by the TB Drug Accelerator Program of the Bill and Melinda Gates Foundation and by the Abby and Howard P. Milstein Program in Translational Medicine. The Department of Microbiology and Immunology was supported by the William Randolph Hearst Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Gold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gold, B., Warrier, T., Nathan, C. (2021). A Multistress Model for High Throughput Screening Against Nonreplicating Mycobacterium tuberculosis . In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics