Skip to main content

Gene Excision by Dual-Guide CRISPR-Cas9

  • Protocol
  • First Online:
Yarrowia lipolytica

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2307))

Abstract

CRISPR-Cas9 is frequently used for creating double-strand DNA breaks that result in indels through non-homologous end joining. Indels can revert to wild-type sequence and require sequencing or complex assays to measure. Cutting by two guide RNAs can lead to single indels at either cut site or simultaneous cutting at both sites and repair leading to gene excision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaguchi A, Spagnuolo M, Blenner M (2018) Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 53:122–129. https://doi.org/10.1016/j.copbio.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  2. Spagnuolo M, Yaguchi A, Blenner M (2019) Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol 57:73–81. https://doi.org/10.1016/j.copbio.2019.02.011

    Article  CAS  PubMed  Google Scholar 

  3. Blazeck J, Hill A, Liu LQ, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131. https://doi.org/10.1038/Ncomms4131

    Article  PubMed  Google Scholar 

  4. Qiao KJ, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2):173–177. https://doi.org/10.1038/nbt.3763

    Article  CAS  PubMed  Google Scholar 

  5. Xue ZX, Sharpe PL, Hong SP, Yadav NS, Xie DM, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang HX, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31(8):734–740. https://doi.org/10.1038/Nbt.2622

    Article  CAS  PubMed  Google Scholar 

  6. Hussain MS, Rodriguez GM, Gao DF, Spagnuolo M, Gambill L, Blenner M (2016) Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. Aims Bioeng 3(4):493–514. https://doi.org/10.3934/bioeng.2016.4.493

    Article  CAS  Google Scholar 

  7. Markham KA, Alper HS (2018) Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol 36(10):1085–1095. https://doi.org/10.1016/j.tibtech.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6(3):402–409. https://doi.org/10.1021/acssynbio.6b00285

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359. https://doi.org/10.1021/acssynbio.5b00162

    Article  CAS  PubMed  Google Scholar 

  10. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. https://doi.org/10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cory Schwartz J-FC, Evans R, Schwartz CA, Wagner JM, Anglin S, Beitz A, Pan W, Lonardi S, Blenner M, Alper HS, Yoshikuni Y, Wheeldon I (2018) Validating genome-wide CRISPR-Cas9 function in the non-conventional yeast Yarrowia lipolytica. bioRxiv. https://doi.org/10.1101/358630

  12. Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett-Miller SM (2018) A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8(1):888. https://doi.org/10.1038/s41598-018-19441-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao D, Smith S, Spagnuolo M, Rodriguez G, Blenner M (2018) Dual CRISPR-Cas9 cleavage mediated gene excision and targeted integration in Yarrowia lipolytica. Biotechnol J 13(9):e1700590. https://doi.org/10.1002/biot.201700590

    Article  CAS  PubMed  Google Scholar 

  14. Wagner JM, Williams EV, Alper HS (2018) Developing a piggyBac transposon system and compatible selection markers for Insertional mutagenesis and genome engineering in Yarrowia lipolytica. Biotechnol J 13(5):e1800022. https://doi.org/10.1002/biot.201800022

    Article  CAS  PubMed  Google Scholar 

  15. Patterson K, Yu J, Landberg J, Chang I, Shavarebi F, Bilanchone V, Sandmeyer S (2018) Functional genomics for the oleaginous yeast Yarrowia lipolytica. Metab Eng 48:184–196. https://doi.org/10.1016/j.ymben.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  16. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59. https://doi.org/10.1007/978-1-61779-564-0_5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF CBET 1403099/1706134) and by an Early Career Award from NASA’s Space Technology Research Grants program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Blenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spagnuolo, M., Blenner, M. (2021). Gene Excision by Dual-Guide CRISPR-Cas9. In: Wheeldon, I., Blenner, M. (eds) Yarrowia lipolytica. Methods in Molecular Biology, vol 2307. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1414-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1414-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1413-6

  • Online ISBN: 978-1-0716-1414-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics