Skip to main content

Mouse Models of Kidney Fibrosis

  • Protocol
  • First Online:
Myofibroblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2299))

Abstract

Chronic kidney disease (CKD) affects over 10% of the worldwide population and kidney fibrosis is a main driver of CKD and considered a therapeutic target. The mechanisms leading to kidney fibrosis are highly complexed and can be best studied in rodent models. Here we describe the most commonly used kidney fibrosis models in mice, the unilateral ureteral obstruction (UUO) model and the ischemia reperfusion injury (IRI) model. Both models are easy to learn and can be applied in animals of different age, sex, and strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramann R, Machado F, Wu H, Kusaba T, Hoeft K, Schneider RK, Humphreys BD (2018) Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. JCI Insight 3(9):e99561. https://doi.org/10.1172/jci.insight.99561

    Article  PubMed Central  Google Scholar 

  2. Kramann R, Wongboonsin J, Chang-Panesso M, Machado FG, Humphreys BD (2017) Gli1+ pericyte loss induces capillary rarefaction and proximal tubular injury. J Am Soc Nephrol 28(3):776–784

    Article  CAS  Google Scholar 

  3. Rabe M, Schaefer F (2016) Non-transgenic mouse models of kidney disease. Nephron 133(1):53–61. https://doi.org/10.1159/000445171

    Article  CAS  PubMed  Google Scholar 

  4. Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, Pedraza-Chaverri J (2019) Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomol Ther 9(4):141. https://doi.org/10.3390/biom9040141

    Article  CAS  Google Scholar 

  5. Heung M, Chawla LS (2014) Acute kidney injury: gateway to chronic kidney disease. Nephron Clin Pract 127(1–4):30–34. https://doi.org/10.1159/000363675

    Article  CAS  PubMed  Google Scholar 

  6. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. JCI (121):4210–4221

    Google Scholar 

  7. Hesketh EE, Czopek A, Clay M, Borthwick G, Ferenbach D, Kluth D, Hughes J (2014) Renal ischaemia reperfusion injury: a mouse model of injury and regeneration. J Vis Exp:88. https://doi.org/10.3791/51816

  8. Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, Wongboonsin J, Ikeda Y, Heckl D, Chang SL, Rennke HG, Waikar SS, Humphreys BD (2015) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125(8):2935–2951. https://doi.org/10.1172/JCI74929

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li L, Kang H, Zhang Q, D'Agati VD, Al-Awqati Q, Lin F (2019) FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest 129(6):2374–2389. https://doi.org/10.1172/JCI122256

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sauer M, Fleischmann T, Lipiski M, Arras M, Jirkof P (2016) Buprenorphine via drinking water and combined oral-injection protocols for pain relief in mice. Appl Anim Behav Sci 185:103–112. https://doi.org/10.1016/j.applanim.2016.09.009

    Article  Google Scholar 

  11. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London, pp 69–154

    Google Scholar 

  12. Ham A, Kim M, Kim JY, Brown KM, Yeh J, D’Agati VD, Lee HT (2013) Critical role of interleukin-11 in isoflurane-mediated protection against ischemic acute kidney injury in mice. Anesthesiology 119(6):1389–1401. https://doi.org/10.1097/ALN.0b013e3182a950da

    Article  CAS  PubMed  Google Scholar 

  13. Aufhauser DD Jr, Wang Z, Murken DR, Bhatti TR, Wang Y, Ge G, Redfield RR 3rd, Abt PL, Wang L, Svoronos N, Thomasson A, Reese PP, Hancock WW, Levine MH (2016) Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J Clin Invest 126(5):1968–1977. https://doi.org/10.1172/JCI84712

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, Perales-Patón J, Jansen J, Reimer KC, Smith JR, Dobie R, Wilson-Kanamori JR, Halder M, Xu Y, Kabgani N, Kaesler N, Klaus M, Gernhold L, Puelles VG, Huber TB, Boor P, Menzel S, Hoogenboezem RM, Bindels EMJ, Steffens J, Floege J, Schneider RK, Saez-Rodriguez J, Henderson NC, Kramann R. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021 Jan;589(7841):281–286. https://doi.org/10.1038/s41586-020-2941-1

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kramann, R., Menzel, S. (2021). Mouse Models of Kidney Fibrosis. In: Hinz, B., Lagares, D. (eds) Myofibroblasts. Methods in Molecular Biology, vol 2299. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1382-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1382-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1381-8

  • Online ISBN: 978-1-0716-1382-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics