Skip to main content

Targeted Analysis of the Plant Lipidome by UPLC-NanoESI-MS/MS

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

The plant lipidome is highly complex and changes dynamically under the influence of various biotic and abiotic stresses. Targeted analyses based on mass spectrometry enable the detection and characterization of the plant lipidome. It can be analyzed in plant tissues of different developmental stages and from isolated cellular organelles and membranes. Here, we describe a sensitive method to establish the relative abundance of molecular lipid species belonging to three lipid categories: glycerolipids, sphingolipids, and sterol lipids. The method is based on a monophasic lipid extraction and includes the derivatization of a few rare and low-abundant lipid classes. The molecular lipid species are resolved by lipid class-specific reverse-phase liquid chromatography and detected by nanoelectrospray ionization coupled with tandem mass spectrometry. The triple quadrupole analyzer is used for detection with multiple reaction monitoring (MRM). Mass transition lists are constructed based on the knowledge of organism-specific lipid building blocks. They are initially determined by classical lipid analytical methods and then used for combinative assembly of all possible lipid structures. The targeted analysis enables detailed and comprehensive profiling of the entire lipid content and composition of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shulaev V, Chapman KD (2017) Plant lipidomics at the crossroads: from technology to biology driven science. Biochim Biophys Acta 1862(8):786–791. https://doi.org/10.1016/j.bbalip.2017.02.011

    Article  CAS  Google Scholar 

  2. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54(6):1523–1530. https://doi.org/10.1194/jlr.M033506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647. https://doi.org/10.1016/j.bbalip.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200

    Article  CAS  PubMed  Google Scholar 

  5. Oldach L (2019) Harmonizing lipidomics. ASBMB Today 18(5):26–39

    Google Scholar 

  6. Yang K, Han X (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 41(11):954–969. https://doi.org/10.1016/j.tibs.2016.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simons B, Kauhanen D, Sylvänne T, Tarasov K, Duchoslav E, Ekroos K (2012) Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer. Meta 2(1):195–213. https://doi.org/10.3390/metabo2010195

    Article  CAS  Google Scholar 

  8. Samarakoon T, Shiva S, Lowe K, Tamura P, Roth MR, Welti R (2012) Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods Mol Biol 918:179–268. https://doi.org/10.1007/978-1-61779-995-2_13

    Article  CAS  PubMed  Google Scholar 

  9. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281(32):22684–22694. https://doi.org/10.1074/jbc.M604050200

    Article  CAS  PubMed  Google Scholar 

  10. Abas L, Luschnig C (2010) Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation. Anal Biochem 401(2):217–227. https://doi.org/10.1016/j.ab.2010.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grillitsch K, Tarazona P, Klug L, Wriessnegger T, Zellnig G, Leitner E, Feussner I, Daum G (2014) Isolation and characterization of the plasma membrane from the yeast Pichia pastoris. Biochim Biophys Acta 1838(7):1889–1897. https://doi.org/10.1016/j.bbamem.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  12. Lee JW, Nishiumi S, Yoshida M, Fukusaki E, Bamba T (2013) Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J Chromatogr A 1279:98–107. https://doi.org/10.1016/j.chroma.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  13. Berdyshev EV, Gorshkova IA, Garcia JGN, Natarajan V, Hubbard WC (2005) Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography–tandem mass spectrometry. Anal Biochem 339(1):129–136. https://doi.org/10.1016/j.ab.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  14. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21(7):1304–1314. https://doi.org/10.1002/rcm.2962

    Article  CAS  PubMed  Google Scholar 

  15. Markham JE (2013) Detection and quantification of plant sphingolipids by LC-MS. In: Munnik T, Heilmann I (eds) Plant lipid signaling protocols. Humana, Totowa, NJ, pp 93–101. https://doi.org/10.1007/978-1-62703-401-2_10

    Chapter  Google Scholar 

  16. Tarazona P, Feussner K, Feussner I (2015) An enhanced plant lipidomics method based on multiplexed liquid chromatography–mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. Plant J 84(3):621–633. https://doi.org/10.1111/tpj.13013

    Article  CAS  PubMed  Google Scholar 

  17. Christie WW, Han X (2010) Lipid analysis – isolation, separation, identification and lipidomic analysis, 4th edn. Oily Press, Bridgwater

    Google Scholar 

  18. Schneiter R (2006) Analysis of yeast lipids. Methods Mol Biol 313:75–84. https://doi.org/10.1385/1-59259-958-3:075

    Article  CAS  PubMed  Google Scholar 

  19. Iven T, Herrfurth C, Hornung E, Heilmann M, Hofvander P, Stymne S, Zhu L-H, Feussner I (2013) Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods 9(1):24. https://doi.org/10.1186/1746-4811-9-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Benning C (2011) Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). J Vis Exp 49:e2518. https://doi.org/10.3791/2518

    Article  CAS  Google Scholar 

  21. Kelly AA, van Erp H, Quettier A-L, Shaw E, Menard G, Kurup S, Eastmond PJ (2013) The SUGAR-DEPENDENT1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. Plant Physiol 162(3):1282–1289. https://doi.org/10.1104/pp.113.219840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cacas J-L, Buré C, Grosjean K, Gerbeau-Pissot P, Lherminier J, Rombouts Y, Maes E, Bossard C, Gronnier J, Furt F, Fouillen L, Germain V, Bayer E, Cluzet S, Robert F, Schmitter J-M, Deleu M, Lins L, Simon-Plas F, Mongrand S (2016) Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol 170(1):367–384. https://doi.org/10.1104/pp.15.00564

    Article  CAS  PubMed  Google Scholar 

  23. Wewer V, Dombrink I, vom Dorp K, Dörmann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52(5):1039–1054. https://doi.org/10.1194/jlr.D013987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibrahim A, Schütz A-L, Galano J-M, Herrfurth C, Feussner K, Durand T, Brodhun F, Feussner I (2011) The alphabet of galactolipids in Arabidopsis thaliana. Front Plant Sci 2:95. https://doi.org/10.3389/fpls.2011.00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Peisker H, Dörmann P (2016) Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry. J Lipid Res 57(7):1308–1321. https://doi.org/10.1194/jlr.D068429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buré C, Cacas JL, Wang F, Gaudin K, Domergue F, Mongrand S, Schmitter JM (2011) Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry. Rapid Commun Mass Spectrom 25(20):3131–3145. https://doi.org/10.1002/rcm.5206

    Article  CAS  PubMed  Google Scholar 

  27. Zienkiewicz A, Gömann J, König S, Herrfurth C, Liu Y-T, Meldau D, Feussner I (2020) Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programs. New Phytol 226(1):170–188. https://doi.org/10.1111/nph.16336

    Article  CAS  PubMed  Google Scholar 

  28. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761(1):121–128. https://doi.org/10.1016/j.bbalip.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  29. Fang L, Ishikawa T, Rennie EA, Murawska GM, Lao J, Yan J, Tsai AY-L, Baidoo EEK, Xu J, Keasling JD, Demura T, Kawai-Yamada M, Scheller HV, Mortimer JC (2016) Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in Arabidopsis. Plant Cell 28(12):2991–3004. https://doi.org/10.1105/tpc.16.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very grateful to Pablo Tarazona for the initial establishment of the lipidomics method and to Tegan Haslam for editing the manuscript. We thank Sabine Freitag and Pia Meyer for their excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Feussner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Herrfurth, C., Liu, YT., Feussner, I. (2021). Targeted Analysis of the Plant Lipidome by UPLC-NanoESI-MS/MS. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics