Skip to main content

Thin-Layer Chromatography

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

Lipid extracts from plants represent a mixture of polar membrane lipids and nonpolar lipids. The main constituents of the polar lipid fraction are glycerolipids, that is, galactolipids, sulfolipid, and phospholipids. In addition, betaine lipids are found in pteridophytes, bryophytes, and algae. Nonpolar lipids include the storage lipid triacylglycerol, wax esters, diacylglycerol and free fatty acids. The complex lipid mixtures from plant tissues can be separated by thin-layer chromatography (TLC) into different lipid classes. In most cases glass plates coated with a silica gel are used as stationary phase and an organic solvent as mobile phase. Different solvent systems are required to separate polar membrane lipids or nonpolar lipids by TLC. Depending on the complexity of the lipid mixture, lipids are separated using one- or two-dimensional TLC systems. Different dyes and reagents allow the visualization of all lipid classes, or the selective staining of glycolipids or phospholipids. Lipids can be isolated from the TLC plate for subsequent analysis, provided that nondestructive methods are used for visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sato N (1992) Betaine lipids. Bot Mag 105(1):185–197. https://doi.org/10.1007/BF02489414

    Article  CAS  Google Scholar 

  2. Tuzimski T, Sherma J (2000) In: Meyers RA (ed) Thin-layer chromatography, vol 15. Wiley, Chichester, UK, pp 1–26

    Google Scholar 

  3. Hölzl G, Leipelt M, Ott C et al (2005) Processive lipid galactosyl/glucosyltransferases from Agrobacterium tumefaciens and Mesorhizobium loti display multiple specificities. Glycobiology 15(9):874–886. https://doi.org/10.1093/glycob/cwi066

    Article  CAS  PubMed  Google Scholar 

  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  5. Roughan PG, Slack CR, Holland R (1978) Generation of phospholipid artefacts during extraction of developing soybean seeds with methanolic solvents. Lipids 13(7):497–503. https://doi.org/10.1007/BF02533620

    Article  CAS  Google Scholar 

  6. Siebertz HP, Heinz E, Linscheid M et al (1979) Characterization of lipids from chloroplast envelopes. Eur J Biochem 101(2):429–438. https://doi.org/10.1111/j.1432-1033.1979.tb19736.x

    Article  CAS  PubMed  Google Scholar 

  7. White T, Bursten S, Federighi D et al (1998) High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem 258(1):109–117. https://doi.org/10.1006/abio.1997.2545

    Article  CAS  PubMed  Google Scholar 

  8. Skipski VP (1975) Thin-layer chromatography of neutral glycosphingolipids. Meth Enzymol 35:396–425. https://doi.org/10.1016/0076-6879(75)35178-1

    Article  CAS  Google Scholar 

  9. Jorasch P, Wolter FP, Zähringer U et al (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29(2):419–430. https://doi.org/10.1046/j.1365-2958.1998.00930.x

    Article  CAS  PubMed  Google Scholar 

  10. Heinze FJ, Linscheid M, Heinz E (1984) Release of diacylglycerol moieties from various glycosyl diacylglycerols. Anal Biochem 139(1):126–133. https://doi.org/10.1016/0003-2697(84)90397-X

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Benning C (2011) Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). J Vis Exp 49. https://doi.org/10.3791/2518

  12. Benning C, Somerville CR (1992) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 174(7):2352–2360. https://doi.org/10.1128/jb.174.7.2352-2360.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dörmann P, Hoffmann-Benning S, Balbo I et al (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7(11):1801–1810. https://doi.org/10.1105/tpc.7.11.1801

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khan M-U, Williams JP (1977) Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidyl glycerol and bis(monoacylglycery) phosphate from animal lipid extracts. J Chromatogr A 140(2):179–185. https://doi.org/10.1016/S0021-9673(00)88412-5

    Article  CAS  Google Scholar 

  15. Heyneman RA, Bernard DM, Vercauteren RE (1972) Direct fluorometric microdetermination of phospholipids on thin-layer chromatograms. J Chromatogr A 68(1):285–288. https://doi.org/10.1016/S0021-9673(00)88791-9

    Article  CAS  Google Scholar 

  16. Müthing J, Kemminer SE (1996) Nondestructive detection of neutral glycosphingolipids with lipophilic anionic fluorochromes and their employment for preparative high-performance thin-layer chromatography. Anal Biochem 238(2):195–202. https://doi.org/10.1006/abio.1996.0275

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hölzl, G., Dörmann, P. (2021). Thin-Layer Chromatography. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics