Skip to main content

iDEP Web Application for RNA-Seq Data Analysis

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2284))

Abstract

RNA sequencing (RNA-seq) has become a routine method for transcriptomic profiling. We developed a user-friendly web app called iDEP (integrated differential expression and pathway analysis) to help biologists interpret read counts or other types of expression matrices derived from read mapping. With iDEP, users can easily conduct exploratory data analysis, identify differentially expressed genes, and perform pathway analysis. Due to its intuitive user interface and massive annotation database, iDEP is being widely adopted for interactive analysis of RNA-seq data. Using a public dataset on the effect of heat shock on mouse with and without functional Hsf1, we demonstrate how users can prepare data files and conduct in-depth analysis. We also discuss the importance of critical interpretion of results (avoid p-hacking and rationalizing) and validation of significant pathways by using different methods and independent annotation databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19(1):534. https://doi.org/10.1186/s12859-018-2486-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, Silverstein MC, Ma'ayan A (2018) Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun 9(1):1366. https://doi.org/10.1038/s41467-018-03751-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ziemann M, Kaspi A, El-Osta A (2019) Digital expression explorer 2: a repository of uniformly processed RNA sequencing data. Gigascience 8(4). https://doi.org/10.1093/gigascience/giz022

  4. Neueder A, Gipson TA, Batterton S, Lazell HJ, Farshim PP, Paganetti P, Housman DE, Bates GP (2017) HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington’s disease mouse models. Sci Rep 7(1):12556. https://doi.org/10.1038/s41598-017-12897-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mallona I, Peinado MA (2017) Truke, a web tool to check for and handle excel misidentified gene symbols. BMC Genomics 18(1):242. https://doi.org/10.1186/s12864-017-3631-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zeeberg BR, Riss J, Kane DW, Bussey KJ, Uchio E, Linehan WM, Barrett JC, Weinstein JN (2004) Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics 5:80. https://doi.org/10.1186/1471-2105-5-80

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ziemann M, Eren Y, El-Osta A (2016) Gene name errors are widespread in the scientific literature. Genome Biol 17(1):177. https://doi.org/10.1186/s13059-016-1044-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zych K, Snoek BL, Elvin M, Rodriguez M, Van der Velde KJ, Arends D, Westra HJ, Swertz MA, Poulin G, Kammenga JE, Breitling R, Jansen RC, Li Y (2017) reGenotyper: detecting mislabeled samples in genetic data. PLoS One 12(2):e0171324. https://doi.org/10.1371/journal.pone.0171324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin X, Moskophidis D, Mivechi NF (2011) Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab 14(1):91–103. https://doi.org/10.1016/j.cmet.2011.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Labbadia J, Morimoto RI (2017) Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol 27(12):895–905. https://doi.org/10.1016/j.tcb.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tonelli C, Morelli MJ, Bianchi S, Rotta L, Capra T, Sabo A, Campaner S, Amati B (2015) Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo. Oncotarget 6(28):24611–24626. https://doi.org/10.18632/oncotarget.5232

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 101(12):4164–4169. https://doi.org/10.1073/pnas.0308531101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furge K, Dykema K (2012) PGSEA: parametric gene set enrichment analysis. R package version 1480

    Google Scholar 

  14. Kim SY, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6:144. https://doi.org/10.1186/1471-2105-6-144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao F, Xuan Z, Liu L, Zhang MQ (2005) TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies. Nucleic Acids Res 33(Database issue):D103–D107. https://doi.org/10.1093/nar/gki004

    Article  CAS  PubMed  Google Scholar 

  17. Toma-Jonik A, Vydra N, Janus P, Widlak W (2019) Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 42(5):579–589. https://doi.org/10.1007/s13402-019-00452-0

    Article  Google Scholar 

  18. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ (2019) The comparative toxicogenomics database: update 2019. Nucleic Acids Res 47(D1):D948–D954. https://doi.org/10.1093/nar/gky868

    Article  CAS  PubMed  Google Scholar 

  19. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935. https://doi.org/10.1126/science.1132939

    Article  CAS  PubMed  Google Scholar 

  20. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10:161. https://doi.org/10.1186/1471-2105-10-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Chang A (2008) Heat shock response relieves ER stress. EMBO J 27(7):1049–1059. https://doi.org/10.1038/emboj.2008.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 271(40):24874–24879

    Article  CAS  PubMed  Google Scholar 

  25. Yu G, He QY (2016) ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst 12(2):477–479. https://doi.org/10.1039/c5mb00663e

    Article  CAS  PubMed  Google Scholar 

  26. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  27. Clifford H, Wessely F, Pendurthi S, Emes RD (2011) Comparison of clustering methods for investigation of genome-wide methylation array data. Front Genet 2:88. https://doi.org/10.3389/fgene.2011.00088

    Article  PubMed  PubMed Central  Google Scholar 

  28. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sergushichev AA (2016) An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ge, X. (2021). iDEP Web Application for RNA-Seq Data Analysis. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1307-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1307-8_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1306-1

  • Online ISBN: 978-1-0716-1307-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics