Skip to main content

RNA Editing Detection in HPC Infrastructures

  • Protocol
  • First Online:
RNA Bioinformatics

Abstract

RNA editing by A-to-I deamination is a relevant co/posttranscriptional modification carried out by ADAR enzymes. In humans, it has pivotal cellular effects and its deregulation has been linked to a variety of human disorders including neurological and neurodegenerative diseases and cancer. Despite its biological relevance, the detection of RNA editing variants in large transcriptome sequencing experiments (RNAseq) is yet a challenging computational task. To drastically reduce computing times we have developed a novel REDItools version able to identify A-to-I events in huge amount of RNAseq data employing High Performance Computing (HPC) infrastructures.

Here we show how to use REDItools v2 in HPC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 03 August 2021

    In the original version of this book, chapter 8 was published with incomplete list of authors. This has now been rectified in this revised version of the book.

References

  1. Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531. https://doi.org/10.1146/annurev.genet.34.1.499

    Article  CAS  PubMed  Google Scholar 

  2. Bar-Yaacov D, Pilpel Y, Dahan O (2018) RNA editing in bacteria: occurrence, regulation and significance. RNA Biol 15:863–867. https://doi.org/10.1080/15476286.2018.1481698

    Article  PubMed  PubMed Central  Google Scholar 

  3. Porath HT, Knisbacher BA, Eisenberg E, Levanon EY (2017) Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol 18:185. https://doi.org/10.1186/s13059-017-1315-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352. https://doi.org/10.1146/annurev-genet-111212-133519

    Article  CAS  PubMed  Google Scholar 

  5. Pfaller CK, Donohue RC, Nersisyan S, Brodsky L, Cattaneo R (2018) Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 16:e2006577. https://doi.org/10.1371/journal.pbio.2006577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G (2015) Profiling RNA editing in human tissues: towards the inosinome atlas. Sci Rep 5:1–17. https://doi.org/10.1038/srep14941

    Article  CAS  Google Scholar 

  7. Lerner T, Papavasiliou FN, Pecori R (2018) RNA editors, cofactors, and mRNA targets: an overview of the C-to-U RNA editing machinery and its implication in human disease. Genes 10. https://doi.org/10.3390/genes10010013

  8. Nishikura K (2010) Functions and regulation of RNA editing by ADAR Deaminases. Annu Rev Biochem 79:321–349. https://doi.org/10.1146/annurev-biochem-060208-105251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83–96. https://doi.org/10.1038/nrm.2015.4

    Article  CAS  PubMed  Google Scholar 

  10. Vesely C, Tauber S, Sedlazeck FJ, Tajaddod M, von Haeseler A, Jantsch MF (2014) ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain. Nucleic Acids Res 42:12155–12168 . https://doi.org/10.1093/nar/gku844

  11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giudice CL, Tangaro MA, Pesole G, Picardi E (2020) Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat Protoc 15:1098–1131. https://doi.org/10.1038/s41596-019-0279-7

    Article  CAS  PubMed  Google Scholar 

  13. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  14. Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ (2016) GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol Biol 1418:283–334. https://doi.org/10.1007/978-1-4939-3578-9_15

    Article  PubMed  Google Scholar 

  15. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lo Giudice C, Silvestris DA, Roth SH, Eisenberg E, Pesole G, Gallo A, Picardi E (2020) Quantifying RNA editing in deep Transcriptome datasets. Front Genet 11:194. https://doi.org/10.3389/fgene.2020.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967. https://doi.org/10.1093/bioinformatics/btp336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ELIXIR-IIB and PRACE projects 2016163924 and 2018194670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Picardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lo Giudice, C. et al. (2021). RNA Editing Detection in HPC Infrastructures. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1307-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1307-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1306-1

  • Online ISBN: 978-1-0716-1307-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics