Skip to main content

Selection of Chemical Modifications in the siRNA Seed Region That Repress Off-Target Effect

  • Protocol
  • First Online:
Design and Delivery of SiRNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2282))

Abstract

RNA interference mediated by small interfering RNA (siRNA) has been widely used as a procedure to knock down the expression of an intended target gene with perfect sequence complementarity. However, siRNA often exhibits off-target effects on genes with partial sequence complementarities. Such off-target effect is an undesirable adverse effect for knocking down a target gene specifically. Here we describe the powerful strategy to avoid off-target effects without affecting the RNAi activity by the introduction of DNA or 2′-O-methyl modifications in the siRNA seed region. These two types of chemical modifications repress off-target effects through different molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  Google Scholar 

  2. Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7:637–660

    Article  CAS  Google Scholar 

  3. Sheu-Gruttadauria J, MacRae IJ (2017) Structural foundations of RNA silencing by Argonaute. J Mol Biol 429:2619–2639

    Article  CAS  Google Scholar 

  4. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

    Article  CAS  Google Scholar 

  5. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  Google Scholar 

  6. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  Google Scholar 

  7. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892–1897

    Article  CAS  Google Scholar 

  8. Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, Shen Y (2005) siRNA mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    Article  CAS  Google Scholar 

  9. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3′UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  Google Scholar 

  10. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  CAS  Google Scholar 

  11. Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K (2008) Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA based off-target effect. Nucleic Acids Res 36:7100–7109

    Article  CAS  Google Scholar 

  12. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahash F, Juni A, Saigo K (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36:2136–2151

    Article  CAS  Google Scholar 

  13. Iribe H, Miyamoto K, Takahashi T, Kobayashi Y, Leo J, Aida M, Ui-Tei K (2017) Chemical modification of the siRNA seed region suppresses off-target effects by steric hindrance to base-pairing with targets. ACS Omega 2:2055–2064

    Article  CAS  Google Scholar 

  14. Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:14719–14735

    Article  CAS  Google Scholar 

  15. Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34:11211–11216

    Article  CAS  Google Scholar 

  16. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10:392

    Article  Google Scholar 

  17. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  18. Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058

    Article  CAS  Google Scholar 

  19. Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  Google Scholar 

  20. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  CAS  Google Scholar 

  21. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  CAS  Google Scholar 

  22. Choung S, Kim YJ, Kim S, Park HO, Choi YC (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342:919–927

    Article  CAS  Google Scholar 

  23. Ge Q, Dalla A, Ilves H, Shorenstein J, Behlke MA, Johnston BH (2010) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA 16:118–130

    Article  CAS  Google Scholar 

  24. Lee JH, Pardi A (2007) Thermodynamics and kinetics for base-pair opening in the P1 duplex of the Tetrahymena group I ribozyme. Nucleic Acids Res 35:2965–2974

    Article  CAS  Google Scholar 

  25. Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 11:651–665

    Article  Google Scholar 

  26. Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 1:5–20

    Article  Google Scholar 

  27. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 1:21–37

    Article  Google Scholar 

  28. Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040

    Article  CAS  Google Scholar 

  29. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Grants-in-Aid for Scientific Research (B) (No. 15H04319) and on Innovative Areas (No. 26102713) from the Ministry of Education, Culture, Sports, Science and Technology and Japan Society for the Promotion of Science, and by the grant from the Suzuken Memorial Foundation to Kumiko Ui-Tei. We used figure data rearranged with original previous report [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumiko Ui-Tei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kobayashi, Y., Miyamoto, K., Aida, M., Ui-Tei, K. (2021). Selection of Chemical Modifications in the siRNA Seed Region That Repress Off-Target Effect. In: Ditzel, H.J., Tuttolomondo, M., Kauppinen, S. (eds) Design and Delivery of SiRNA Therapeutics. Methods in Molecular Biology, vol 2282. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1298-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1298-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1297-2

  • Online ISBN: 978-1-0716-1298-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics