Skip to main content

Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9

  • Protocol
  • First Online:
TET Proteins and DNA Demethylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2272))

Abstract

Methylation of DNA at cytosine bases is an important DNA modification underlying normal development and disease states. Despite decades of research into the biological function of DNA methylation, most of the observations so far have relied primarily on associative data between observed changes in DNA methylation states and local changes in transcriptional activity or chromatin state processes. This is primarily due to the lack of molecular tools to precisely modify DNA methylation in the genome. Recent advances in genome editing technologies have allowed repurposing the CRISPR-Cas9 system for epigenome editing by fusing the catalytically dead Cas9 (dCas9) to epigenome modifying enzymes. Moreover, methods of recruiting multiple protein domains, including the SunTag system, have increased the efficacy of epigenome editing at target sites. Here, we describe an end-to-end protocol for efficient targeted removal of DNA methylation by recruiting multiple catalytic domain of TET1 enzymes to the target sites with the dCas9-SunTag system, including sgRNA design, molecular cloning, delivery of plasmid into mammalian cells, and targeted DNA methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  Google Scholar 

  2. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  Google Scholar 

  3. Edwards JR, Yarychkivska O, Boulard M et al (2017) DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10:23

    Article  Google Scholar 

  4. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  Google Scholar 

  5. Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  Google Scholar 

  6. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  CAS  Google Scholar 

  7. Li J-Y, Pu M-T, Hirasawa R et al (2007) Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 27:8748–8759

    Article  CAS  Google Scholar 

  8. Liao J, Karnik R, Gu H et al (2015) Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet 47:469–478

    Article  CAS  Google Scholar 

  9. Duymich CE, Charlet J, Yang X et al (2016) DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 7:11453

    Article  Google Scholar 

  10. Pflueger C, Swain T, Lister R (2019) Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem 63:813

    Article  CAS  Google Scholar 

  11. Lei Y, Huang Y-H, Goodell MA (2018) DNA methylation and de-methylation using hybrid site-targeting proteins. Genome Biol 19:187

    Article  Google Scholar 

  12. Chen H, Kazemier HG, Groote ML et al (2014) Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42:1563–1574

    Article  CAS  Google Scholar 

  13. Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    Article  CAS  Google Scholar 

  14. Grimmer MR, Stolzenburg S, Ford E et al (2014) Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res 42:10856–10868

    Article  CAS  Google Scholar 

  15. Valton J, Dupuy A, Daboussi F et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  CAS  Google Scholar 

  16. Pflueger C, Tan D, Swain T et al (2018) A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res 28:1193–1206

    Article  CAS  Google Scholar 

  17. Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  Google Scholar 

  18. O’Geen H, Ren C, Nicolet CM et al (2017) dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res 45:9901–9916

    Article  Google Scholar 

  19. Choudhury SR, Cui Y, Lubecka K et al (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:46545–46556

    Article  Google Scholar 

  20. Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247.e17

    Article  CAS  Google Scholar 

  21. Xu X, Tao Y, Gao X et al (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009

    Article  CAS  Google Scholar 

  22. Morita S, Noguchi H, Horii T et al (2016) Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat Biotechnol 34:1060–1065

    Article  CAS  Google Scholar 

  23. Gallego-Bartolomé J, Gardiner J, Liu W et al (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci U S A 115:E2125–E2134

    Article  Google Scholar 

  24. Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TN was supported by the Forrest Research Foundation PhD Scholarship. RL was supported by a Sylvia and Charles Viertel Senior Medical Research Fellowship, NHMRC Investigator Grant (GNT1178460), and a Howard Hughes Medical Institute International Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Lister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, T.V., Lister, R. (2021). Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9. In: Bogdanovic, O., Vermeulen, M. (eds) TET Proteins and DNA Demethylation. Methods in Molecular Biology, vol 2272. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1294-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1294-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1293-4

  • Online ISBN: 978-1-0716-1294-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics