Skip to main content

Methods for Isolation and Recovery of Bifidobacteria

  • Protocol
  • First Online:
Bifidobacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2278))

Abstract

Since their discovery, bifidobacteria have been considered to represent cornerstone commensal microorganisms in the host-microbiome interface at the intestinal level. Bifidobacteria have therefore enjoyed increasing scientific and commercial interest as a source of microorganisms with probiotic potential. However, since functional and probiotic traits are strictly strain-dependent, there is a constant need to isolate, cultivate, and characterize novel strains, activities that require the utilization of appropriate media, as well as robust isolation, cultivation, and preservation techniques. Besides, effective isolation of bifidobacteria from natural environments might require different manipulation and cultivation media and conditions depending on the specific characteristics of the sample material, the presence of competitive microbiota, the metabolic state in which bifidobacteria might be encountered within the sample and the particular metabolic traits of the bifidobacterial species adapted to such inhabitation.

A wide array of culture media recipes have been described in the literature to routinely isolate and grow bifidobacteria under laboratory conditions. However, there is not a single and universally applicable medium for effective isolation, recovery, and cultivation of bifidobacteria, as each growth medium has its own particular advantages and limitations. Besides, the vast majority of these media formulations was not specifically formulated for these microorganisms, and thus information on bifidobacterial cultivation options is scarce while being scattered throughout literature. This chapter intends to serve as a resource summarizing the options to cultivate bifidobacteria that have been described to date, highlighting the main advantages and limitations of each of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925. https://doi.org/10.3389/fmicb.2016.00925

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bottacini F, van Sinderen D, Ventura M (2017) Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 474:4137–4152. https://doi.org/10.1042/BCJ20160756

    Article  PubMed  CAS  Google Scholar 

  3. Lugli GA, Milani C, Duranti S et al (2019) Isolation of novel gut bifidobacteria using a combination of metagenomic and cultivation approaches. Genome Biol 20:96. https://doi.org/10.1186/s13059-019-1711-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Milani C, Turroni F, Duranti S et al (2016) Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82:980. https://doi.org/10.1128/AEM.03500-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zúñiga M, Monedero V, Yebra MJ (2018) Utilization of host-derived Glycans by intestinal Lactobacillus and Bifidobacterium species. Front Microbiol 9:1917. https://doi.org/10.3389/fmicb.2018.01917

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sakanaka M, Hansen ME, Gotoh A et al (2019) Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 5:eaaw7696. https://doi.org/10.1126/SCIADV.AAW7696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Thomson P, Medina DA, Garrido D (2018) Human milk oligosaccharides and infant gut bifidobacteria: molecular strategies for their utilization. Food Microbiol 75:37–46. https://doi.org/10.1016/J.FM.2017.09.001

    Article  PubMed  CAS  Google Scholar 

  8. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6:285–306. https://doi.org/10.1007/s12263-010-0206-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ferrario C, Duranti S, Milani C et al (2015) Exploring amino acid Auxotrophy in Bifidobacterium bifidum PRL2010. Front Microbiol 6:1331. https://doi.org/10.3389/fmicb.2015.01331

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sugahara H, Odamaki T, Hashikura N et al (2015) Differences in folate production by bifidobacteria of different origins. Biosci Microbiota Food Health 34:87–93. https://doi.org/10.12938/bmfh.2015-003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lanigan N, Bottacini F, Casey PG et al (2017) Genome-wide search for genes required for Bifidobacterial growth under iron-limitation. Front Microbiol 8:964. https://doi.org/10.3389/fmicb.2017.00964

    Article  PubMed  PubMed Central  Google Scholar 

  12. De MJC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  13. Pacher B, Kneifel W (1996) Development of a culture medium for the detection and enumeration of bifidobacteria in fermented milk products. Int Dairy J 6:43–64. https://doi.org/10.1016/0958-6946(94)00052-2

    Article  Google Scholar 

  14. Bottacini F, Morrissey R, Esteban-Torres M et al (2018) Comparative genomics and genotype-phenotype associations in Bifidobacterium breve. Sci Rep 8:10633. https://doi.org/10.1038/s41598-018-28919-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Arboleya S, Bottacini F, O’Connell-Motherway M et al (2018) Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics 19:33. https://doi.org/10.1186/S12864-017-4388-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Scardovi V (1986) Bifidobacterium. In: Sneath HAP, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1418–1435

    Google Scholar 

  17. Bunešová V, Vlková E, Rada V et al (2012) Bifidobacterium animalis subsp. lactis strains isolated from dog faeces. Vet Microbiol 160:501–505. https://doi.org/10.1016/J.VETMIC.2012.06.005

    Article  PubMed  Google Scholar 

  18. Barret E, Mattarelli P, Simpson P et al (2011) Culture media for the detection and enumeration of bifidobacteria in food production. In: Handbook. Royal Society of Chemistry, Cambridge

    Google Scholar 

  19. Ferraris L, Aires J, Waligora-Dupriet A-J, Butel M-J (2010) New selective medium for selection of bifidobacteria from human feces. Anaerobe 16:469–471. https://doi.org/10.1016/J.ANAEROBE.2010.03.008

    Article  PubMed  Google Scholar 

  20. Vlková E, Salmonová H, Bunešová V et al (2015) A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 34:27–33. https://doi.org/10.1016/J.ANAEROBE.2015.04.001

    Article  PubMed  Google Scholar 

  21. Lapierre L, Undeland P, Cox LJ (1992) Lithium chloride-sodium propionate agar for the enumeration of Bifidobacteria in fermented dairy products. J Dairy Sci 75:1192–1196. https://doi.org/10.3168/jds.S0022-0302(92)77866-7

    Article  PubMed  CAS  Google Scholar 

  22. Rada V, Petr J (2000) A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J Microbiol Methods 43:127–132

    Article  CAS  Google Scholar 

  23. Süle J, Kõrösi T, Hucker A, Varga L (2014) Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Braz J Microbiol 45:1023–1030. https://doi.org/10.1590/s1517-83822014000300035

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bunesova V, Musilova S, Geigerova M et al (2015) Comparison of mupirocin-based media for selective enumeration of bifidobacteria in probiotic supplements. J Microbiol Methods 109:106–109. https://doi.org/10.1016/j.mimet.2014.12.016

    Article  PubMed  CAS  Google Scholar 

  25. Miranda RO, de Carvalho AF, Nero LA (2014) Development of a selective culture medium for bifidobacteria, Raffinose-propionate lithium mupirocin (RP-MUP) and assessment of its usage with Petrifilm™ aerobic count plates. Food Microbiol 39:96–102. https://doi.org/10.1016/j.fm.2013.11.010

    Article  PubMed  CAS  Google Scholar 

  26. Kongo J, Gomes A, Malcata F (2003) Development of a chemically defined medium for growth of Bifidobacterium animalis. JFS Food Microbiol Saf 68:2742–2746

    CAS  Google Scholar 

  27. Sakaguchi K, Funaoka N, Tani S et al (2013) The pyrE gene as a bidirectional selection marker in Bifidobacterium Longum 105-a. Biosci Microbiota Food Health 32:59–68. https://doi.org/10.12938/bmfh.32.59

    Article  PubMed  PubMed Central  Google Scholar 

  28. D’Aimmo MR, Mattarelli P, Biavati B et al (2012) The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 112:975–984. https://doi.org/10.1111/j.1365-2672.2012.05261.x

    Article  PubMed  CAS  Google Scholar 

  29. Pompei A, Cordisco L, Amaretti A et al (2007) Folate production by Bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73:179. https://doi.org/10.1128/AEM.01763-06

    Article  PubMed  CAS  Google Scholar 

  30. Nebra Y, Jofre J, Blanch AR (2002) The effect of reducing agents on the recovery of injured Bifidobacterium cells. J Microbiol Methods 49:247–254. https://doi.org/10.1016/S0167-7012(01)00373-6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Margolles, A., Ruiz, L. (2021). Methods for Isolation and Recovery of Bifidobacteria. In: van Sinderen, D., Ventura, M. (eds) Bifidobacteria. Methods in Molecular Biology, vol 2278. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1274-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1274-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1273-6

  • Online ISBN: 978-1-0716-1274-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics