Skip to main content

Mitochondrial Transplantation for Ischemia Reperfusion Injury

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2277))

Abstract

Mitochondrial transplantation is a novel therapeutic intervention to treat ischemia-reperfusion-related disorders. This approach uses replacement of native mitochondria with viable, respiration-competent mitochondria isolated from non-ischemic tissue obtained from the patient’s own body, to overcome the many deleterious effects of ischemia-reperfusion injury on native mitochondria. The safety and efficacy of this methodology has been demonstrated in cell culture, animal models and has been shown to be safe and efficacious in a phase I clinical trial in pediatric cardiac patients with ischemia-reperfusion injury. These studies have demonstrated that mitochondrial transplantation rescues myocardial cellular viability and significantly enhances postischemic myocardial function following ischemia-reperfusion injury. Herein, we describe methodologies for the delivery of isolated mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silachev DN, Plotnikov EY, Pevzner IB et al (2104) The mitochondrion as a key regulator of ischaemic tolerance and injury. Heart Lung Circ 23(10):897–904

    Article  Google Scholar 

  2. Torrealba N, Aranguiz P, Alonso C et al (2017) Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol 982:277–306

    Article  CAS  PubMed  Google Scholar 

  3. Murphy MP, Hartley RC (2018) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17(12):865–886

    Article  CAS  PubMed  Google Scholar 

  4. Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565

    Article  CAS  PubMed  Google Scholar 

  5. Shin B, Saeed MY, Esch JJ et al (2019) A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: safety and efficacy in the Ischemic Myocardium. JACC Basic Transl Res 4(8):871–888

    Google Scholar 

  6. Preble JM, Kondo H, Mc Cully JD et al (2014) Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp (91):2–8

    Google Scholar 

  7. McCully JD, Levitsky S, del Nido PJ, Cowan DB (2016) Mitochondrial transplantation for therapeutic use. Clin Transl Med 5(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Emani SM, McCully JD (2018) Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr 7(2):169–175

    Article  PubMed  PubMed Central  Google Scholar 

  9. McCully JD, Cowan DB, Pacak CA et al (2009) Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Circ Physiol 296(1):H94–H105

    Article  CAS  Google Scholar 

  10. Rousou AJ, Ericsson M, Federman M et al (2004) Opening of mitochondrial K ATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Circ Physiol 287(5):H1967–H1976

    Article  CAS  Google Scholar 

  11. McCully JD, Bhasin MK, Daly C et al (2009) Transcriptomic and proteomic analysis of global ischemia and cardioprotection in the rabbit heart. Physiol Genomics 38(2):125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pacak CA, Preble JM, Kondo H et al (2015) Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol Open 4(5):622–626

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guariento A, Blitzer D, Doulamis IP et al (2019) Pre-ischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg 160:e15–e29. https://doi.org/10.1016/j.jtcvs.2019.06.111

    Article  PubMed  Google Scholar 

  14. Cowan DB, Yao R, Thedsanamoorthy JK et al (2017) Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 7(1):17450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cowan DB, Yao R, Akurathi V et al (2016) Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One 11(8):1–19

    Article  CAS  Google Scholar 

  16. Masuzawa A, Black KM, Pacak CA et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Circ Physiol 304(7):H966–H982

    Article  CAS  Google Scholar 

  17. Kaza AK, Wamala I, Friehs I et al (2017) Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 153(4):934–943

    Article  PubMed  Google Scholar 

  18. McCully JD, Cowan DB, Emani SM, del Nido PJ. (2017) Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34(3):127–134

    Google Scholar 

  19. Emani SM, Piekarski BL, Harrild D et al (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154(1):286–289

    Article  PubMed  Google Scholar 

  20. Laskowski M, Augustynek B, Kulawiak B et al (2016) What do we not know about mitochondrial potassium channels? Biochim Biophys Acta Bioenerg 1857(8):1247–1257

    Article  CAS  Google Scholar 

  21. Hausenloy DJ, Barrabes JA, Bøtker HE et al (2016) Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 111:70. https://doi.org/10.1007/s00395-016-0588-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Madonna R, Cadeddu C, Deidda M et al (2015) Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Fail Rev 20(5):621–631

    Article  CAS  PubMed  Google Scholar 

  23. Hsiao YP, Lai WW, Wu SB et al (2015) Triggering apoptotic death of human epidermal keratinocytes by malic acid: involvement of endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Toxins (Basel) 7(1):81–96

    Article  CAS  Google Scholar 

  24. Shin B, Saeed M, Esch JJ et al (2019) A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria safety and efficacy in the ischemic myocardium. JACC Basic Transl Sci 4(8):871–888

    Article  PubMed  PubMed Central  Google Scholar 

  25. Preble JM, Kondo H, Levitsky S, James D (2014) Quality control parameters for mitochondria transplant in cardiac tissue. Mol Biol 2(6):1–4

    Google Scholar 

  26. Moskowitzova K, Orfany A, Liu K et al (2020) Mitochondrial transplantation enhances murine lung viability and recovery after ischemia reperfusion injury. Am J Physiol Cell Mol Physiol 318(1):78–88

    Article  CAS  Google Scholar 

  27. Blitzer D, Guariento A, Doulamis IP et al (2020) Delayed transplantation of autologous mitochondria for cardioprotection in a porcine model. Ann Thorac Surg 109(3):711–719

    Article  PubMed  Google Scholar 

  28. Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol 39(5):368–376

    Article  CAS  PubMed  Google Scholar 

  29. King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52(6):811–819

    Article  CAS  PubMed  Google Scholar 

  30. Kitani T, Kami D, Matoba S, Gojo S (2014) Internalization of isolated functional mitochondria: involvement of macropinocytosis. J Cell Mol Med 18(8):1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kesner EE, Saada-Reich A, Lorberboum-Galski H (2016) Characteristics of mitochondrial transformation into human cells. Sci Rep 6:26057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang J-C, Liu K-H, Li Y-C et al (2013) Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals 21(3–4):160–173

    Article  CAS  PubMed  Google Scholar 

  33. Caicedo A, Aponte PM, Cabrera F et al (2017) Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int 2017(3):1–23

    Article  CAS  Google Scholar 

  34. Clark MA, Shay JW (1982) Mitochondrial transformation of mammalian cells. Nature 295(5850):605–607

    Article  CAS  PubMed  Google Scholar 

  35. Katrangi E, D’Souza G, Boddapati SV et al (2007) Xenogenic transfer of isolated murine mitochondria into human ρ0 cells can improve respiratory function. Rejuvenation Res 10(4):561–570

    Article  PubMed  Google Scholar 

  36. Zhu L, Zhang J, Zhou J et al (2016) Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget 7(31):48925–48940

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hayakawa K, Esposito E, Wang X et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim MJ, Hwang JW, Yun C-K et al (2018) Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep 8(1):3330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gollihue JL, Patel SP, Rabchevsky AG (2018) Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regen Res 13(2):194–197

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gupta N, Wu CH, Wu GY (2016) Targeted transplantation of mitochondria to hepatocytes. Hepat Med 8:115–134

    PubMed  PubMed Central  Google Scholar 

  41. Mombo BN, Gerbal-Chaloin S, Bokus A et al (2017) MitoCeption: transferring isolated human MSC mitochondria to glioblastoma stem cells. J Vis Exp (120):55245. https://doi.org/10.3791/55245

  42. Cabrera F, Ortega M, Velarde F et al (2019) Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation. BMC Biotechnol 19(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu C-S, Chang J-C, Kuo S-J et al (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53:141–146

    Article  CAS  PubMed  Google Scholar 

  44. Wu T-H, Sagullo E, Case D et al (2016) Mitochondrial transfer by photothermal nanoblade restores metabolite profile in mammalian cells. Cell Metab 23(5):921–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan AS, Baty JW, Dong L-F et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21(1):81–94

    Article  CAS  PubMed  Google Scholar 

  46. Gollihue JL, Patel SP, Eldahan KC et al (2018) Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma 35(15):1800–1818

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gollihue JL, Rabchevsky AG (2017) Prospects for therapeutic mitochondrial transplantation. Mitochondrion 35:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gollihue JL, Patel SP, Mashburn C et al (2017) Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods 287:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Masuzawa A, Black KM, Pacak CA et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. AJP Heart Circ Physiol 304(7):H966–H982

    Article  CAS  Google Scholar 

  50. Ramirez-Barbieri G, Moskowitzova K, Shin B et al (2018) Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion 46(2):0–1

    Google Scholar 

  51. Schmitt S, Saathoff F, Meissner L et al (2013) A semi-automated method for isolating functionally intact mitochondria from cultured cells and tissue biopsies. Anal Biochem 443(1):66–74

    Article  CAS  PubMed  Google Scholar 

  52. Graham JM (2001) Isolation of mitochondria from tissues and cells by differential centrifugation. Curr Protoc Cell Biol Chapter 3:Unit 3.3. https://doi.org/10.1002/0471143030.cb0303s04

    Article  CAS  PubMed  Google Scholar 

  53. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc 2(2):287–295

    Article  CAS  PubMed  Google Scholar 

  54. Orfany A, Arriola CG, Doulamis IP et al (2019) Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg 71(3):1014–1026

    Article  PubMed  Google Scholar 

  55. Doulamis IP, Guariento A, Duignan T et al (2019) Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardio Thorac Surg 57:836. https://doi.org/10.1093/ejcts/ezz326

    Article  Google Scholar 

  56. Olson MS, Von Korff RW (1967) The effect of depletion of endogenous substrates on the metabolic behavior of isolated rabbit heart mitochondria. J Biol Chem 242(2):333–338

    Article  CAS  PubMed  Google Scholar 

  57. Wechsler MB (1961) Studies on oxidative phosphorylation and ATPase activity of fresh and frozen brain mitochondria. Arch Biochem Biophys 95(3):494–498

    Article  CAS  PubMed  Google Scholar 

  58. Nukala VN, Singh IN, Davis LM, Sullivan PG (2006) Cryopreservation of brain mitochondria: a novel methodology for functional studies. J Neurosci Methods 152(1–2):48–54

    Article  CAS  PubMed  Google Scholar 

  59. Shin B, Cowan DB, Emani SM et al (2017) Mitochondrial transplantation in myocardial ischemia and reperfusion injury. Adv Exp Med Biol 982:595–619

    Article  CAS  PubMed  Google Scholar 

  60. Shoffner JM, Lott MT, Lezza AMS et al (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61(6):931–937

    Article  CAS  PubMed  Google Scholar 

  61. Chomyn A, Martinuzzi A, Yoneda M et al (1992) MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A 89(10):4221–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wallace DC (2016) Genetics: mitochondrial DNA in evolution and disease. Nature 535(7613):498–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Phadke R (2017) Myopathology of adult and paediatric mitochondrial diseases. J Clin Med 6:64. https://doi.org/10.3390/jcm6070064

    Article  CAS  PubMed Central  Google Scholar 

  64. Dou S, Smith M, Wang Y et al (2013) Intraperitoneal injection is not always a suitable alternative to intravenous injection for radiotherapy. Cancer Biother Radiopharm 28(4):335–342

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Moskowitzova K, Shin B, Liu K et al (2019) Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. J Heart Lung Transpl 38(1):92–99

    Article  Google Scholar 

  66. Huang X, Sun L, Ji S et al (2013) Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci U S A 110(8):2846–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Islam MN, Das SR, Emin MT et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103(5):1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stark G, Domanowits H, Sterz F et al (1994) Action of ATP on ventricular automaticity. J Cardiovasc Pharmacol 24(5):740–744

    Article  CAS  PubMed  Google Scholar 

  70. Soncul H, ersöz A, Gökgöz L et al (1992) Cardioplegia with adenosine and adenosine triphosphate in the isolated Guinea pig heart. Jpn Heart J 33(6):843–850

    Article  CAS  PubMed  Google Scholar 

  71. Bolling SF, Bies LE, Bove EL (1990) Effect of ATP synthesis promoters on postischemic myocardial recovery. J Surg Res 49(3):205–211

    Article  CAS  PubMed  Google Scholar 

  72. Bertero E, Maack C, O’Rourke B (2018) Mitochondrial transplantation in humans: “magical” cure or cause for concern? J Clin Invest 128(12):5191–5194

    Article  PubMed  PubMed Central  Google Scholar 

  73. Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J Biol Chem 281(17):11658–11668

    Article  CAS  PubMed  Google Scholar 

  74. Kim DY, Simeone KA, Simeone TA et al (2015) Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol 78(1):77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Phys 258(5):C755–C786

    Article  CAS  Google Scholar 

  76. Shi X, Zhao M, Fu C, Fu A (2017) Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion 34:91–100

    Article  CAS  PubMed  Google Scholar 

  77. Song X, Hu W, Yu H et al (2020) Existence of circulating mitochondria in human and animal peripheral blood. Int J Mol Sci 21:2122

    Article  CAS  PubMed Central  Google Scholar 

  78. Al Amir Dache Z, Otandault A, Tanos R et al (2020) Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34(3):3616–3630

    Article  PubMed  CAS  Google Scholar 

  79. Kukat A, Kukat C, Brocher J et al (2008) Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Res 36(7):e44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Borstlap J, Kurtz A (2008) Integration of immunological aspects in the European human embryonic stem cell registry. Eur J Immunol 38(5):1181–1185

    CAS  PubMed  Google Scholar 

  81. Swijnenburg R-J, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105(35):12991–12996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bifari F (2010) Immunological properties of embryonic and adult stem cells. World J. Stem Cells 2(3):50

    Google Scholar 

  83. Russo E, Napoli E, Borlongan C (2018) Healthy mitochondria for stroke cells. Brain Circ 4(3):95

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. McCully .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Doulamis, I.P., McCully, J.D. (2021). Mitochondrial Transplantation for Ischemia Reperfusion Injury. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics