Skip to main content

Isolation of Extracellular Vesicles for Proteomic Profiling

  • Protocol
  • First Online:
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2261))

Abstract

Extracellular vesicles (EVs) are nano-sized lipid bilayer surrounded by structures released from most cells, including archaea, bacteria, and eukaryotic cells. EVs play multiple roles in cell-to-cell communication, including immune modulation, angiogenesis, and phenotypic transformation of cells by transferring genetic material and functional proteins. They contain specific subsets of proteins, DNA, RNA, and lipids that represent their cellular origin. Furthermore, EVs are enriched in cell type- or disease-specific proteins, especially plasma membrane proteins, which have pathophysiological functions; many of these vesicular proteins are investigated as novel diagnostic biomarkers, as well as therapeutic targets. To profile the global EV proteome, their various purification methods have been developed, of which density gradient ultracentrifugation is considered especially promising. In this chapter, we describe the isolation of EVs derived from SW480 cells with serum-free media and from U373 cells with EV-depleted serum-containing media, and the preparation of tryptic peptides for mass-spectrometry-based proteomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi DS, Kim DK, Kim YK, Gho YS (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13:1554–1571

    Article  CAS  Google Scholar 

  2. Choi DS, Kim DK, Kim YK, Gho YS (2015) Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev 34:474–490

    Article  CAS  Google Scholar 

  3. Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lotvall JO, Hwang D, Gho YS (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2:20384

    Article  Google Scholar 

  4. Choi D, Spinelli C, Montermini L, Rak J (2019) Oncogenic regulation of extracellular vesicle proteome and heterogeneity. Proteomics 19:e1800169

    Article  Google Scholar 

  5. Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J (2018) The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics 17:1948–1964

    Article  CAS  Google Scholar 

  6. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22

    PubMed  Google Scholar 

  7. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885

    Article  CAS  Google Scholar 

  8. Kato K, Kobayashi M, Hanamura N, Akagi T, Kosaka N, Ochiya T, Ichik i T (2013) Electrokinetic evaluation of individual exosomes by on-chip microcapillary electrophoresis with laser dark-field microscopy. Jpn J Appl Phys 52:06GK10

    Article  Google Scholar 

  9. Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS (2011) Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics 11:2745–2751

    Article  CAS  Google Scholar 

  10. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208

    Article  CAS  Google Scholar 

  11. Kang D, Oh S, Ahn SM, Lee BH, Moon MH (2008) Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res 7:3475–3480

    Article  CAS  Google Scholar 

  12. Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW (2009) Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 102:711–718

    Article  CAS  Google Scholar 

  13. Looze C, Yui D, Leung L, Ingham M, Kaler M, Yao X, Wu WW, Shen RF, Daniels MP, Levine SJ (2009) Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem Biophys Res Commun 378:433–438

    Article  CAS  Google Scholar 

  14. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556

    Article  Google Scholar 

  15. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to Gyeongyun Go for helping in isolation and characterization of EVs and Jaewook Lee for analysis of the EVs in transmission electron microscope. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2014023004, 2018R1A2A1A05079510, and 2012R1A1A2042534) and by the Foundation Grant (FDN 143322) from Canadian Institutes for Health Research to J.R.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, D., Rak, J., Gho, Y.S. (2021). Isolation of Extracellular Vesicles for Proteomic Profiling. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics