Skip to main content

Fabrication Method of a High-Density Co-Culture Tumor–Stroma Platform to Study Cancer Progression

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

Cancer has now been established as one of the most common chronic diseases due to high mortality rate. The early stage of non-invasive tumors can now be successfully treated leading to have high survival rates; however, the late stage invasive and metastatic tumors still suffer from poor treatment outcomes. Among multiple contributing factors, the role of tumor microenvironment and its complexities has been well recognized in cancer progression. Stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells, adipocytes, immune cells as well as extracellular matrix (ECM) continuously interact with malignant cells and regulate various hallmarks of cancer including tumor growth, invasion, and intravasation. To better understand the role of the interaction between tumor cells and their surrounding microenvironment, numerous model systems ranging from two-dimensional (2D) assays to 3D hydrogels and in vivo murine xenografts have been utilized. While each one of these model systems exhibit certain advantages in studying biological facets of tumor progression, they are often limited to perform well-controlled mechanistic studies due to various factors including lack of tumor–stroma organotypic organization and presence of confounding biochemical and biophysical factors within the tumor microenvironment. In this regard, in the past few years, 3D in vitro microengineered model systems are becoming instrumental to precisely mimic the complexities of the native tumor microenvironment to conduct fundamental and well-designed studies for multiple purposes ranging from biological discovery to therapeutic screening. These model systems include microfluidics, micro-patterned features, and 3D organoids. In this chapter, we will outline the fabrication strategy of our microengineered 3D co-culture tumor–stromal model which comprises high-density array of tumor seeded microwells surrounded by stromal cells, such as CAFs encapsulated within collagen-based hydrogel. The developed platform provides excellent spatial organization of tumor and stromal entities with designated initial architecture and cellular positioning, therefore enabling to study the specific role of cell–cell and cell–ECM interaction on tumor proliferation/expansion, cancer cell migration as well as stromal activation. The developed platform is compatible with standard biological assays enabling gene and protein expression analyses across different types of cancer and co-culture of tumor and stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AFM:

Atomic force microscopy

APTMS:

(3-Aminopropyl) trimethoxysilane

CAFs:

Cancer-associated fibroblasts

DCDMS:

Dichlorodimethylsilane

ECM:

Extracellular matrix

PDMS:

Polydimethylsiloxane

TAM:

Tumor-associated macrophages

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69(5):363–385. https://doi.org/10.3322/caac.21565

    Article  PubMed  Google Scholar 

  3. Liu Q, Zhang H, Jiang X, Qian C, Liu Z, Luo D (2017) Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer 16(1):176. https://doi.org/10.1186/s12943-017-0742-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Migrating cancer stem cells — an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–749. https://doi.org/10.1038/nrc1694

    Article  CAS  PubMed  Google Scholar 

  5. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. https://doi.org/10.1038/nrc2618

    Article  CAS  PubMed  Google Scholar 

  6. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  8. Walker C, Mojares E, Del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19(10):3028

    Article  Google Scholar 

  9. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. https://doi.org/10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  11. Jang I, Beningo KA (2019) Integrins, CAFs and mechanical forces in the progression of cancer. Cancers 11(5):721

    Article  CAS  Google Scholar 

  12. Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3):489–502. https://doi.org/10.1007/s10555-007-9094-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peela N, Truong D, Saini H, Chu H, Mashaghi S, Ham SL, Singh S, Tavana H, Mosadegh B, Nikkhah M (2017) Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials 133:176–207. https://doi.org/10.1016/j.biomaterials.2017.04.017

  14. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219. https://doi.org/10.2147/vhrm.2006.2.3.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagaraju S, Truong D, Mouneimne G, Nikkhah M (2018) Microfluidic tumor–vascular model to study breast cancer cell invasion and intravasation. Adv Healthc Mater 7(9):1701257. https://doi.org/10.1002/adhm.201701257

    Article  CAS  Google Scholar 

  16. Liu Y, Cao X (2015) The origin and function of tumor-associated macrophages. Cell Mol Immunol 12(1):1–4. https://doi.org/10.1038/cmi.2014.83

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10(1):58. https://doi.org/10.1186/s13045-017-0430-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4):840

    Article  CAS  Google Scholar 

  19. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K (2016) 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Infanger DW, Lynch ME, Fischbach C (2013) Engineered culture models for studies of tumor-microenvironment interactions. Annu Rev Biomed Eng 15(1):29–53. https://doi.org/10.1146/annurev-bioeng-071811-150028

    Article  CAS  PubMed  Google Scholar 

  21. Todo H (2017) Transdermal permeation of drugs in various animal species. Pharmaceutics 9(3):33

    Article  Google Scholar 

  22. Wagar LE, DiFazio RM, Davis MM (2018) Advanced model systems and tools for basic and translational human immunology. Genome Med 10(1):73. https://doi.org/10.1186/s13073-018-0584-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikkhah M, Strobl JS, Schmelz EM, Roberts PC, Zhou H, Agah M (2011) MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays. Biomaterials 32(30):7625–7632. https://doi.org/10.1016/j.biomaterials.2011.06.041

  24. Nikkhah M, Strobl JS, Peddi B, Agah M (2008) Cytoskeletal role in differential adhesion patterns of normal fibroblasts and breast cancer cells inside silicon microenvironments. Biomed Microdevices 11(3):585. https://doi.org/10.1007/s10544-008-9268-2

    Article  CAS  Google Scholar 

  25. Nikkhah M, Strobl JS, Agah M (2008) Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries. Biomed Microdevices 11(2):429. https://doi.org/10.1007/s10544-008-9249-5

    Article  CAS  Google Scholar 

  26. Nikk0hah M, Strobl JS, De Vita R, Agah M (2010) The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials 31(16):4552–4561. https://doi.org/10.1016/j.biomaterials.2010.02.034

  27. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33(21):5230–5246. https://doi.org/10.1016/j.biomaterials.2012.03.079

  28. Liu T, Chien C-C, Parkinson L, Thierry B (2014) Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids. ACS Appl Mater Interfaces 6(11):8090–8097. https://doi.org/10.1021/am500367h

    Article  CAS  PubMed  Google Scholar 

  29. Tang Y, Liu J, Chen Y (2016) Agarose multi-wells for tumour spheroid formation and anti-cancer drug test. Microelectron Eng 158:41–45. https://doi.org/10.1016/j.mee.2016.03.009

  30. Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K (2018) Organoid technology and applications in cancer research. J Hematol Oncol 11(1):116. https://doi.org/10.1186/s13045-018-0662-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh M, Close DA, Mukundan S, Johnston AP, Sant S (2015) Production of uniform 3D microtumors in hydrogel microwell arrays for measurement of viability, morphology, and signaling pathway activation. Assay Drug Dev Technol 13(9):570–583. https://doi.org/10.1089/adt.2015.662

  32. Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M (2016) Breast cancer cell invasion into a three dimensional tumor-stroma microenvironment. Sci Rep 6(1):34094. https://doi.org/10.1038/srep34094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peela N, Barrientos ES, Truong D, Mouneimne G, Nikkhah M (2017) Effect of suberoylanilide hydroxamic acid (SAHA) on breast cancer cells within a tumor–stroma microfluidic model. Integr Biol 9(12):988–999. https://doi.org/10.1039/c7ib00180k

    Article  CAS  Google Scholar 

  34. Truong DD, Kratz A, Park JG, Barrientos ES, Saini H, Nguyen T, Pockaj B, Mouneimne G, LaBaer J, Nikkhah M (2019) A human organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast cancer cells. Cancer Res 79(12):3139–3151. https://doi.org/10.1158/0008-5472.Can-18-2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Truong D, Fiorelli R, Barrientos ES, Melendez EL, Sanai N, Mehta S, Nikkhah M (2019) A three-dimensional (3D) organotypic microfluidic model for glioma stem cells – vascular interactions. Biomaterials 198:63–77. https://doi.org/10.1016/j.biomaterials.2018.07.048

  36. Saini H, Rahmani Eliato K, Silva C, Allam M, Mouneimne G, Ros R, Nikkhah M (2018) The role of desmoplasia and stromal fibroblasts on anti-cancer drug resistance in a microengineered tumor model. Cell Mol Bioeng 11(5):419–433. https://doi.org/10.1007/s12195-018-0544-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nelson CM, Inman JL, Bissell MJ (2008) Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protoc 3(4):674–678. https://doi.org/10.1038/nprot.2008.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peela N, Sam FS, Christenson W, Truong D, Watson AW, Mouneimne G, Ros R, Nikkhah M (2016) A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83. https://doi.org/10.1016/j.biomaterials.2015.11.039

  39. Cui X, Hartanto Y, Zhang H (2017) Advances in multicellular spheroids formation. J R Soc Interface 14(127):20160877. https://doi.org/10.1098/rsif.2016.0877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bahlmann LC, Smith LJ, Shoichet MS Designer biomaterials to model cancer cell invasion in vitro: predictive tools or just pretty pictures? Adv Funct Mater 30 (16): 1909032. https://doi.org/10.1002/adfm.201909032

  41. Saini H, Navaei A, Van Putten A, Nikkhah M (2015) 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts. Adv Healthc Mater 4(13):1961–1971. https://doi.org/10.1002/adhm.201500331

    Article  CAS  PubMed  Google Scholar 

  42. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24(14):1782–1804. https://doi.org/10.1002/adma.201104631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hassanzadeh P, Kharaziha M, Nikkhah M, Shin SR, Jin J, He S, Sun W, Zhong C, Dokmeci MR, Khademhosseini A, Rolandi M (2013) Chitin nanofiber micropatterned flexible substrates for tissue engineering. J Mater Chem B 1(34):4217–4224. https://doi.org/10.1039/C3TB20782J

    Article  CAS  Google Scholar 

  44. Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23(39):4950–4959. https://doi.org/10.1002/adfm.201300570

    Article  CAS  Google Scholar 

  45. Dolatshahi-Pirouz A, Nikkhah M, Kolind K, Dokmeci MR, Khademhosseini A (2011) Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. J Funct Biomater 2(3):88–106. https://doi.org/10.3390/jfb2030088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nelson CM, VanDuijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314(5797):298–300. https://doi.org/10.1126/science.1131000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, Dolatshahi-Pirouz A, Edalat F, Bae H, Yang Y, Khademhosseini A (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33(35):9009–9018. https://doi.org/10.1016/j.biomaterials.2012.08.068

  48. Saini H, Rahmani Eliato K, Veldhuizen J, Zare A, Allam M, Silva C, Kratz A, Truong D, Mouneimne G, LaBaer J, Ros R, Nikkhah M (2020) The role of tumor-stroma interactions on desmoplasia and tumorigenicity within a microengineered 3D platform. Biomaterials 247:119975. https://doi.org/10.1016/j.biomaterials.2020.119975

Download references

Acknowledgments

The authors would like to acknowledge National Science Foundation (NSF) Award Number 1914680 for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nikkhah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saini, H., Nikkhah, M. (2021). Fabrication Method of a High-Density Co-Culture Tumor–Stroma Platform to Study Cancer Progression. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics