Skip to main content

Modeling the Complexity of the Metastatic Niche Ex Vivo

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

Cancer mortality predominantly results from distant metastases that are undetectable at diagnosis and escape initial therapies to lie as dormant micrometastases for years. To study the behavior of micrometastases—how they resist initial treatments and then awaken from a dormant state—we utilize the Legacy LiverChip®, an all-human ex vivo hepatic microphysiological system. The functional liver bioreactor, comprising hepatocytes and non-parenchymal cells in a 3D microperfused culture format, mimics the dormant-emergent metastatic progression observed in human patients: (a) a subpopulation of cancer cells spontaneously enter dormancy, (b) cycling cells are eliminated by standard chemotherapies, while quiescent dormant cells remain, and (c) chemoresistant dormant cells can be stimulated to emerge. The system effluent and tissue can be queried for proteomic and genomic data, immunofluorescent imaging as well as drug efficacy and metabolism. This microphysiological system continues to provide critical insights into the biology of dormant and re-emergent micrometastases and serves as an accessible tool to identify new therapeutic strategies targeting the various stages of metastasis, while concurrently evaluating antineoplastic agent efficacy for metastasis, metabolism, and dose-limiting toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells A, Yates C, Shepard CR (2008) E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 25(6):621–628

    Article  CAS  Google Scholar 

  2. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764

    Article  CAS  Google Scholar 

  3. Hackam DG, Redelmeier DA (2006) Translation of research evidence from animals to humans. JAMA 296(14):1731–1732

    Article  CAS  Google Scholar 

  4. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    Article  CAS  Google Scholar 

  5. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8(4):212

    Article  Google Scholar 

  6. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523

    Article  CAS  Google Scholar 

  7. Teicher BA (2006) Tumor models for efficacy determination. Mol Cancer Ther 5(10):2435–2443

    Article  CAS  Google Scholar 

  8. Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ et al (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262

    Article  CAS  Google Scholar 

  9. Wikswo JP (2014) The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 239(9):1061–1072

    Article  Google Scholar 

  10. Clark AM, Kumar MP, Wheeler SE, Young CL, Venkataramanan R, Stolz DB et al (2018) A model of dormant-emergent metastatic breast cancer progression enabling exploration of biomarker signatures. Mol Cell Proteomics 17(4):619–630

    Article  CAS  Google Scholar 

  11. Clark AM, Wheeler SE, Young CL, Stockdale L, Shepard Neiman J, Zhao W et al (2016) A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab Chip 17(1):156–168

    Article  CAS  Google Scholar 

  12. Wheeler SE, Clark AM, Taylor DP, Young CL, Pillai VC, Stolz DB et al (2014) Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br J Cancer 111(12):2342–2350

    Article  CAS  Google Scholar 

  13. Wyld L, Gutteridge E, Pinder SE, James JJ, Chan SY, Cheung KL et al (2003) Prognostic factors for patients with hepatic metastases from breast cancer. Br J Cancer 89(2):284–290

    Article  CAS  Google Scholar 

  14. Tas F (2012) Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J Oncol 2012:647684

    Article  Google Scholar 

  15. Ren Y, Dai C, Zheng H, Zhou F, She Y, Jiang G et al (2016) Prognostic effect of liver metastasis in lung cancer patients with distant metastasis. Oncotarget 7(33):53245–53253

    Article  Google Scholar 

  16. Pond GR, Sonpavde G, de Wit R, Eisenberger MA, Tannock IF, Armstrong AJ (2014) The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur Urol 65(1):3–6

    Article  Google Scholar 

  17. King PD, Perry MC (2001) Hepatotoxicity of chemotherapy. Oncologist 6(2):162–176

    Article  CAS  Google Scholar 

  18. Domansky K, Inman W, Serdy J, Dash A, Lim MH, Griffith LG (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58

    Article  CAS  Google Scholar 

  19. Clark AM, Wheeler SE, Taylor DP, Pillai VC, Young CL, Prantil-Baun R et al (2014) A microphysiological system model of therapy for liver micrometastases. Exp Biol Med (Maywood) 239(9):1170–1179

    Article  Google Scholar 

  20. Beckwitt CH, Clark AM, Ma B, Whaley D, Oltvai ZN, Wells A (2018) Statins attenuate outgrowth of breast cancer metastases. Br J Cancer 119(9):1094–1105

    Article  CAS  Google Scholar 

  21. Dioufa N, Clark AM, Ma B, Beckwitt CH, Wells A (2017) Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Mol Cancer 16(1):172

    Article  Google Scholar 

  22. Khazali AS, Clark AM, Wells A (2018) Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy. Br J Cancer 118(4):566–576

    Article  CAS  Google Scholar 

  23. Clark AM, Ma B, Taylor DL, Griffith L, Wells A (2016) Liver metastases: microenvironments and ex-vivo models. Exp Biol Med (Maywood) 241(15):1639–1652

    Article  CAS  Google Scholar 

  24. Long TJ, Cosgrove PA, Dunn RT 2nd, Stolz DB, Hamadeh H, Afshari C et al (2016) Modeling therapeutic antibody-small molecule drug-drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab Dispos 44(12):1940–1948

    Article  CAS  Google Scholar 

  25. Sarkar U, Ravindra KC, Large E, Young CL, Rivera-Burgos D, Yu J et al (2017) Integrated assessment of diclofenac biotransformation, pharmacokinetics, and omics-based toxicity in a three-dimensional human liver-immunocompetent coculture system. Drug Metab Dispos 45(7):855–866

    Article  Google Scholar 

  26. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179

    Article  Google Scholar 

  27. Taylor DP, Clark A, Wheeler S, Wells A (2014) Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition. Breast Cancer Res Treat 144(3):551–560

    Article  CAS  Google Scholar 

  28. Yates C, Shepard CR, Papworth G, Dash A, Beer Stolz D, Tannenbaum S et al (2007) Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 97:225–246

    Article  Google Scholar 

  29. Tsamandouras N, Kostrzewski T, Stokes CL, Griffith LG, Hughes DJ, Cirit M (2017) Quantitative assessment of population variability in hepatic drug metabolism using a perfused three-dimensional human liver microphysiological system. J Pharmacol Exp Ther 360(1):95–105

    Article  CAS  Google Scholar 

  30. Chen WLK, Edington C, Suter E, Yu J, Velazquez JJ, Velazquez JG et al (2017) Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol Bioeng 114(11):2648–2659

    Article  CAS  Google Scholar 

  31. Pillai VC, Strom SC, Caritis SN, Venkataramanan R (2013) A sensitive and specific CYP cocktail assay for the simultaneous assessment of human cytochrome P450 activities in primary cultures of human hepatocytes using LC-MS/MS. J Pharm Biomed Anal 74:126–132

    Article  CAS  Google Scholar 

  32. Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A et al (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78(3):257–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The methodologies were informed by studies funded by the VA Merit Award program, the National Institutes of Health (UH3TR000496, GM69668, and GM63569), and the United States Department of Defense (W81XWH-19-1-0494). The funders had no input over any aspects of this work. The author also thanks members of the Wells laboratory and those of Doug Lauffenburger and Linda Griffith (MIT) for informed discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clark, A.M. (2021). Modeling the Complexity of the Metastatic Niche Ex Vivo. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics