Skip to main content

Analysis of microRNA Regulation in Single Cells

  • Protocol
  • First Online:
Deep Sequencing Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2243))

Abstract

MicroRNAs (miRNAs) regulate gene expression by binding to mRNAs. Consequently, they reduce target gene expression levels and expression variability, also known as “noise.” Single-cell RNA sequencing (scRNA-seq) technology has been used to study miRNA and mRNA expression in single cells, and has demonstrated its strength in quantifying cell-to-cell variation. Here we describe how to investigate miRNA regulation using data with both mRNA and miRNA expression in single cell format. We show that miRNAs reduce the expression levels and also expression noise of target genes in single cells. Finally, we also discuss potential improvements in experimental design and computational analysis of scRNA-seq in order to reduce or partition the technical noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840. https://doi.org/10.1038/nature09267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baek D, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71. https://doi.org/10.1038/nature07242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63. https://doi.org/10.1038/nature07228

    Article  CAS  PubMed  Google Scholar 

  4. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524. https://doi.org/10.1016/j.cell.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmiedel JM, Klemm SL, Zheng Y et al (2015) Gene expression. MicroRNA control of protein expression noise. Science 348(6230):128–132. https://doi.org/10.1126/science.aaa1738

    Article  CAS  PubMed  Google Scholar 

  6. Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–S24. https://doi.org/10.1038/ng1803

    Article  CAS  PubMed  Google Scholar 

  7. Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620. https://doi.org/10.1016/j.molcel.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Faridani OR, Abdullayev I, Hagemann-Jensen M et al (2016) Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol 34(12):1264–1266. https://doi.org/10.1038/nbt.3701

    Article  CAS  PubMed  Google Scholar 

  9. Buffa FM, Camps C, Winchester L et al (2011) microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 71(17):5635–5645. https://doi.org/10.1158/0008-5472.CAN-11-0489

    Article  CAS  PubMed  Google Scholar 

  10. Camps C, Saini HK, Mole DR et al (2014) Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer 13:28. https://doi.org/10.1186/1476-4598-13-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoffman Y, Pilpel Y (2015) Gene expression. MicroRNAs silence the noisy genome. Science 348(6230):41–42. https://doi.org/10.1126/science.aaa9841

    Article  CAS  PubMed  Google Scholar 

  12. Kim JK, Kolodziejczyk AA, Ilicic T et al (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6:8687. https://doi.org/10.1038/ncomms9687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166. https://doi.org/10.1038/nmeth.2772

    Article  CAS  PubMed  Google Scholar 

  14. Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21(9):1543–1551. https://doi.org/10.1101/gr.121095.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abadi M, Barham P, Chen J et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016. pp 265–283

    Google Scholar 

  16. Eraslan G, Simon LM, Mircea M et al (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun 10(1):390. https://doi.org/10.1038/s41467-018-07931-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang N, Zheng J, Chen Z et al (2019) Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat Commun 10(1):95. https://doi.org/10.1038/s41467-018-07981-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Agarwal V, Bell GW, Nam JW et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed Central  Google Scholar 

  19. Picelli S, Bjorklund AK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098. https://doi.org/10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  20. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang M, Wang J, Torre E et al (2018) SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods 15(7):539–542. https://doi.org/10.1038/s41592-018-0033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li WV, Li JJ (2018) An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun 9(1):997. https://doi.org/10.1038/s41467-018-03405-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Dijk D, Sharma R, Nainys J et al (2018) Recovering gene interactions from single-cell data using data diffusion. Cell 174(3):716–729.e727. https://doi.org/10.1016/j.cell.2018.05.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Riffo-Campos AL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17(12):1987. https://doi.org/10.3390/ijms17121987

    Article  CAS  PubMed Central  Google Scholar 

  25. Teng M, Love MI, Davis CA et al (2016) A benchmark for RNA-seq quantification pipelines. Genome Biol 17:74. https://doi.org/10.1186/s13059-016-0940-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vallejos CA, Marioni JC, Richardson S (2015) BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 11(6):e1004333. https://doi.org/10.1371/journal.pcbi.1004333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Tsinghua Xuetang Life Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Shomron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, W., Shomron, N. (2021). Analysis of microRNA Regulation in Single Cells. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 2243. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1103-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1103-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1102-9

  • Online ISBN: 978-1-0716-1103-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics