Skip to main content

lamassemble: Multiple Alignment and Consensus Sequence of Long Reads

  • Protocol
  • First Online:
Multiple Sequence Alignment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2231))

Abstract

Long DNA and RNA reads from nanopore and PacBio technologies have many applications, but the raw reads have a substantial error rate. More accurate sequences can be obtained by merging multiple reads from overlapping parts of the same sequence. lamassemble aligns up to ∼1000 reads to each other, and makes a consensus sequence, which is often much more accurate than the raw reads. It is useful for studying a region of interest such as an expanded tandem repeat or other disease-causing mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitsuhashi S, Matsumoto N (2019) Long-read sequencing for rare human genetic diseases. J Hum Genet 65:1–9

    Google Scholar 

  2. Mongan AE, Tuda JSB, Runtuwene LR (2019) Portable sequencer in the fight against infectious disease. J Hum Genet 1–6. https://doi.org/10.1038/s10038-019-0675-4

  3. Sakamoto Y, Sereewattanawoot S, Suzuki A (2019) A new era of long-read sequencing for cancer genomics. J Hum Genet 65:1–8

    Google Scholar 

  4. Stancu MC, Van Roosmalen MJ, Renkens I, Nieboer MM, Middelkamp S, De Ligt J, Pregno G, Giachino D, Mandrile G, Valle-Inclan JE, et al (2017) Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun 8(1):1–13

    Article  Google Scholar 

  5. Florian RT, Kraft F, Leitão E, Kaya S, Klebe S, Magnin E, vanRootselaar A-F, Buratti J, Kühnel T, Schröder C, et al (2019) Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  6. Corbett MA, Kroes T, Veneziano L, Bennett MF, Florian R, Schneider AL, Coppola A, Licchetta L, Franceschetti S, Suppa A, et al (2019) Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 10(1):1–10

    Article  Google Scholar 

  7. Yeetong P, Pongpanich M, Srichomthong C, Assawapitaksakul A, Shotelersuk V, Tantirukdham N, Chunharas C, Suphapeetiporn K, Shotelersuk V (2019) TTTCA repeat insertions in an intron of YEATS2 in benign adult familial myoclonic epilepsy type 4. Brain 142(11):3360–3366

    Article  Google Scholar 

  8. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, Almansour MA, Kikuchi JK, Taira M, Mitsui J, et al (2019) Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 51(8):1222–1232

    Article  CAS  Google Scholar 

  9. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K Koike H, Hashiguchi A, Takashima H, Sugiyama H, et al (2019) Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 51(8):1215–1221

    Article  CAS  Google Scholar 

  10. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med 12, 67 (2020).

    Google Scholar 

  11. De Coster W, De Rijk P, De Roeck A, De Pooter T, D’Hert S, Strazisar M, Sleegers K, Van Broeckhoven C (2019) Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res 29(7):1178–1187

    Article  Google Scholar 

  12. Hamada M, Ono Y, Asai K, Frith MC (2017) Training alignment parameters for arbitrary sequencers with LAST-TRAIN. Bioinformatics 33(6):926–928

    CAS  PubMed  Google Scholar 

  13. Mitsuhashi S, Frith MC, Mizuguchi T, Miyatake S, Toyota T, Adachi H, Oma Y, Kino Y, Mitsuhashi H, Matsumoto N (2019) Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol 20(1):58

    Article  Google Scholar 

  14. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Frith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frith, M.C., Mitsuhashi, S., Katoh, K. (2021). lamassemble: Multiple Alignment and Consensus Sequence of Long Reads. In: Katoh, K. (eds) Multiple Sequence Alignment. Methods in Molecular Biology, vol 2231. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1036-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1036-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1035-0

  • Online ISBN: 978-1-0716-1036-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics