Skip to main content

Murine Limb Bud Organ Cultures for Studying Musculoskeletal Development

  • Protocol
  • First Online:
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2230))

Abstract

The biological signals that coordinate the three-dimensional outgrowth and patterning of the vertebrate limb bud have been well delineated. These include a number of vital embryonic signaling pathways, including the fibroblast growth factor, WNT, transforming growth factor, and hedgehog. Collectively these signals converge on multiple progenitor populations to drive the formation of a variety of tissues that make up the limb musculoskeletal system, such as muscle, tendon, cartilage, stroma, and bone. The basic mechanisms regulating the commitment and differentiation of diverse limb progenitor populations has been successfully modeled in vitro using high density primary limb mesenchymal or micromass cultures. However, this approach is limited in its ability to more faithfully recapitulate the assembly of progenitors into organized tissues that span the entire musculoskeletal system. Other biological systems have benefitted from the development and availability of three-dimensional organoid cultures which have transformed our understanding of tissue development, homeostasis and regeneration. Such a system does not exist that effectively models the complexity of limb development. However, limb bud organ cultures while still necessitating the use of collected embryonic tissue have proved to be a powerful model system to elucidate the molecular underpinning of musculoskeletal development. In this methods article, the derivation and use of limb bud organ cultures from murine limb buds will be described, along with strategies to manipulate signaling pathways, examine gene expression and for longitudinal lineage tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benazet JD, Zeller R (2009) Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb Perspect Biol 1:a001339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hurle JM, Ros MA, Ganan Y et al (1990) Experimental analysis of the role of ECM in the patterning of the distal tendons of the developing limb bud. Cell Differ Dev 30:97–108

    Article  CAS  PubMed  Google Scholar 

  3. Tabin CJ (1991) Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66:199–217

    Article  CAS  PubMed  Google Scholar 

  4. Tickle C, Eichele G (1994) Vertebrate limb development. Annu Rev Cell Biol 10:121–152

    Article  CAS  PubMed  Google Scholar 

  5. Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    CAS  PubMed  Google Scholar 

  6. Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol (Berl) 150:171–186

    Article  CAS  Google Scholar 

  7. Lee KK, Sze LY (1993) Role of the brachial somites in the development of the appendicular musculature in rat embryos. Dev Dyn 198:86–96

    Article  CAS  PubMed  Google Scholar 

  8. Kardon G, Harfe BD, Tabin CJ (2003) A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. Dev Cell 5:937–944

    Article  CAS  PubMed  Google Scholar 

  9. Kardon G (1998) Muscle and tendon morphogenesis in the avian hind limb. Development 125:4019–4032

    Article  CAS  PubMed  Google Scholar 

  10. Gaut L, Duprez D (2016) Tendon development and diseases. Wiley Interdiscip Rev Dev Biol 5:5–23

    Article  CAS  PubMed  Google Scholar 

  11. Schweitzer R, Chyung JH, Murtaugh LC et al (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    Article  CAS  PubMed  Google Scholar 

  12. Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113:235–248

    Article  CAS  PubMed  Google Scholar 

  13. Kieny M, Chevallier A (1979) Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol 49:153–165

    CAS  PubMed  Google Scholar 

  14. Tozer S, Duprez D (2005) Tendon and ligament: development, repair and disease. Birth Defects Res C Embryo Today 75:226–236

    Article  CAS  PubMed  Google Scholar 

  15. Chen JW, Galloway JL (2014) The development of zebrafish tendon and ligament progenitors. Development 141:2035–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hall BK, Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. BioEssays 22:138–147

    Article  CAS  PubMed  Google Scholar 

  17. Bi W, Deng JM, Zhang Z et al (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  CAS  PubMed  Google Scholar 

  18. Akiyama H, Chaboissier MC, Martin JF et al (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lefebvre V, Behringer RR, de Crombrugghe B (2001) L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthr Cartilage 9(Suppl A):S69–S75

    Article  Google Scholar 

  20. Smits P, Li P, Mandel J et al (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 1:277–290

    Article  CAS  PubMed  Google Scholar 

  21. Bell DM, Leung KK, Wheatley SC et al (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178

    Article  CAS  PubMed  Google Scholar 

  22. Bridgewater LC, Walker MD, Miller GC et al (2003) Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Res 31:1541–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Y, Lefebvre V (2008) L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol 28:4999–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kronenberg HM (2006) PTHrP and skeletal development. Ann N Y Acad Sci 1068:1–13

    Article  CAS  PubMed  Google Scholar 

  25. Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75:200–212

    Article  CAS  PubMed  Google Scholar 

  26. Gerstenfeld LC, Shapiro FD (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 62:1–9

    Article  CAS  PubMed  Google Scholar 

  27. Aghajanian P, Mohan S (2018) The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 6:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mizuhashi K, Ono W, Matsushita Y et al (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563:254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang L, Tsang KY, Tang HC et al (2014) Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 111:12097–12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman L (1987) Teratological research using in vitro systems. II. Rodent limb bud culture system. Environ Health Perspect 72:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Underhill TM, Dranse HJ, Hoffman LM (2014) Analysis of chondrogenesis using micromass cultures of limb mesenchyme. Methods Mol Biol 1130:251–265

    Article  PubMed  Google Scholar 

  32. Curtin P, Youm H, Salih E (2012) Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials 33:1065–1078

    Article  CAS  PubMed  Google Scholar 

  33. Sloan AJ, Taylor SY, Smith EL (2012) Organotypic mandibular cultures for the study of inflammatory bone pathology. In: Davies J (ed) Replacing animal models. Wiley, New York, pp 159–166

    Chapter  Google Scholar 

  34. Smith EL, Kanczler JM, Oreffo RO (2013) A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation. Eur Cell Mater 26:91–106. discussion 106

    Article  CAS  PubMed  Google Scholar 

  35. Neubert D, Barrach H-J (1977) Techniques applicable to study morphogenetic differentiation of limb buds in organ culture. In: Neubert D, Merker H-J, Kwasigroch TE (eds) Methods in prenatal toxicology. Georg Thieme Publishers, Stuttgart, pp 241–251

    Google Scholar 

  36. Hargrave M, Bowles J, Koopman P (2006) In situ hybridization of whole-mount embryos. Methods Mol Biol 326:103–113

    CAS  PubMed  Google Scholar 

  37. Scott RW, Underhill TM (2016) Methods and strategies for lineage tracing of mesenchymal progenitor cells. Methods Mol Biol 1416:171–203

    Article  CAS  PubMed  Google Scholar 

  38. Hoffman LM, Garcha K, Karamboulas K et al (2006) BMP action in skeletogenesis involves attenuation of retinoid signaling. J Cell Biol 174:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barak H, Boyle SC (2011) Organ culture and immunostaining of mouse embryonic kidneys. Cold Spring Harb Protoc 2011:pdb.prot5558

    Article  PubMed  Google Scholar 

  40. Gomez-Gaviro MV, Balaban E, Bocancea D et al (2017) Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution. Development 144:2092–2097

    CAS  PubMed  Google Scholar 

  41. Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488

    Article  CAS  PubMed  Google Scholar 

  42. Ke MT, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16:1154–1161

    Article  CAS  PubMed  Google Scholar 

  43. Kuwajima T, Sitko AA, Bhansali P et al (2013) ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140:1364–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barth J, Ivarie R (1994) Polyvinyl alcohol enhances detection of low abundance transcripts in early stage quail embryos in a nonradioactive whole mount in situ hybridization technique. BioTechniques 17(324):326–327

    Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: Canadian Institutes of Health (CIHR) PJT-149026 (T.M.U.) and PJT-148816 (T.M.U.). M.A. was supported by a UBC graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Michael Underhill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arostegui, M., Underhill, T.M. (2021). Murine Limb Bud Organ Cultures for Studying Musculoskeletal Development. In: Hilton, M.J. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 2230. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1028-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1028-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1027-5

  • Online ISBN: 978-1-0716-1028-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics