Skip to main content

Development and Expression of Subunit Vaccines Against Viruses in Plants

  • Protocol
  • First Online:
Viruses as Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2225))

Abstract

Various systems exist for the robust production of recombinant proteins. However, only a few systems are optimal for human vaccine protein production. Plant-based transient protein expression systems offer an advantageous alternative to costly mammalian cell culture-based systems and can perform posttranslational modifications due to the presence of an endomembrane system that is largely similar to that of the animal cell. Technological advances in expression vectors for transient expression in the last two decades have produced new plant expression systems with the flexibility and speed that cannot be matched by those based on mammalian or insect cell culture. The rapid and high-level protein production capability of transient expression systems makes them the optimal system to quickly and versatilely develop and produce vaccines against viruses such as 2019-nCoV that have sudden and unpredictable outbreaks. Here, expression of antiviral subunit vaccines in Nicotiana benthamiana plants via transient expression is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attar N (2016) ZIKA virus circulates in new regions. Nat Rev Microbiol 14(2):62

    Article  CAS  Google Scholar 

  2. Dowd KA, Ko S-Y, Morabito KM et al (2016) Rapid development of a DNA vaccine for Zika virus. Science 354:237

    Article  CAS  Google Scholar 

  3. Hickman HD, Pierson TC (2016) Zika in the brain: new models shed light on viral infection. Trends Mol Med 22(8):639–641

    Article  Google Scholar 

  4. Zhao H, Fernandez E, Dowd KA et al (2016) Structural basis of Zika virus-specific antibody protection. Cell 166(4):1016–1027

    Article  CAS  Google Scholar 

  5. Yang M, Sun H, Lai H et al (2018) Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnol J 16(2):572–580

    Article  CAS  Google Scholar 

  6. Chen Q (2008) Expression and purification of pharmaceutical proteins in plants. Biol Eng 1(4):291–321

    Article  CAS  Google Scholar 

  7. Chen Q, Mason HS, Mor T et al (2009) Subunit vaccines produced using plant biotechnology. In: Levine MM (ed) New Generation Vaccines, 4th edn. Informa Healthcare, Boca Raton, pp. 306–315. https://doi.org/10.3109/9781420060744.030

  8. Chen Q (2011) Expression and manufacture of pharmaceutical proteins in genetically engineered horticultural plants. In: Scorza R, Baiquan M (eds) Transgenic Horticultural Crops Challenges and Opportunities. Taylor & Francis, pp 83–124. https://doi.org/10.1201/b10952-5

  9. Faye L, Gomord V (2010) Success stories in molecular farming—a brief overview. Plant Biotechnol J 8(5):525–528

    Article  Google Scholar 

  10. Davies HM (2010) Review article: Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8(8):845–861

    Article  Google Scholar 

  11. Chen Q (2011) Turning a new leaf. Eur Biopharm Rev 2:64–68

    Google Scholar 

  12. Komarova TV, Baschieri S, Donini M et al (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9(8):859–876

    Article  CAS  Google Scholar 

  13. Chen Q, Lai H, Hurtado J et al (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1(1):103

    Article  CAS  Google Scholar 

  14. Leuzinger K, Dent M, Hurtado J et al (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:50521

    Google Scholar 

  15. Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7(2):182–188

    Article  CAS  Google Scholar 

  16. Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216(2):366–377

    Article  CAS  Google Scholar 

  17. Buswell S, Medina-Bolivar F, Chen Q et al (2005) Expression of porcine prorelaxin in transgenic tobacco. Ann N Y Acad Sci 1041(1):77–81

    Article  CAS  Google Scholar 

  18. Santi L, Batchelor L, Huang Z et al (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26(15):1846–1854

    Article  CAS  Google Scholar 

  19. Marillonnet S, Thoeringer C, Kandzia R et al (2005) Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23(6):718–723

    Article  CAS  Google Scholar 

  20. Chen Q, He J, Phoolcharoen W et al (2011) Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 7(3):331–338

    Article  CAS  Google Scholar 

  21. Huang Z, Phoolcharoen W, Lai H et al (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106(1):9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Diamos AG, Hunter JGL, Pardhe MD et al (2020) High level production of monoclonal antibodies using an optimized plant expression system. Front Bioeng Biotechnol 7:472–472

    Article  Google Scholar 

  23. Rattanapisit K, Phakham T, Buranapraditkun S et al (2019) Structural and in vitro functional analyses of novel plant-produced anti-human PD1 antibody. Sci Rep 9(1):15205

    Article  CAS  Google Scholar 

  24. Chen Q (2016) Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. Proc Natl Acad Sci U S A 113(34):9404–9406

    Article  CAS  Google Scholar 

  25. He J, Peng L, Lai H et al (2014) A plant-produced antigen elicits potent immune responses against West Nile virus in mice. Biomed Res Int 2014:10. https://doi.org/10.1155/2014/952865

    Article  Google Scholar 

  26. Huang Z, Chen Q, Hjelm B et al (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103(4):706–714

    Article  CAS  Google Scholar 

  27. Lai H, He J, Engle M et al (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10(1):95–104

    Article  CAS  Google Scholar 

  28. Lai H, Paul AM, Sun H et al (2018) A plant-produced vaccine protects mice against lethal West Nile virus infection without enhancing Zika or dengue virus infectivity. Vaccine 36(14):1846–1852

    Article  CAS  Google Scholar 

  29. Loos A, Steinkellner H (2014) Plant glyco-biotechnology on the way to synthetic biology. Front Plant Sci 5:523

    Article  Google Scholar 

  30. Phoolcharoen W, Bhoo SH, Lai H et al (2011) Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 9(7):807–816

    Article  CAS  Google Scholar 

  31. Phoolcharoen W, Dye JM, Kilbourne J et al (2011) A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. Proc Natl Acad Sci U S A 108(51):20695–20700

    Article  CAS  Google Scholar 

  32. Shaaltiel Y, Tekoah Y (2016) Plant specific N-glycans do not have proven adverse effects in humans. Nat Biotechnol 34(7):706–708

    Article  CAS  Google Scholar 

  33. Yang M, Lai H, Sun H et al (2017) Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Sci Rep 7(1):7679

    Article  CAS  Google Scholar 

  34. Dent M, Hurtado J, Paul AM et al (2016) Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol 97(12):3280–3290

    Article  CAS  Google Scholar 

  35. He J, Lai H, Engle M et al (2014) Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS One 9(3):e93541. https://doi.org/10.1371/journal.pone.0093541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hurtado J, Acharya D, Lai H et al (2019) In vitro and in vivo efficacy of anti-chikungunya virus monoclonal antibodies produced in wild-type and glycoengineered Nicotiana benthamiana plants. Plant Biotechnol J 18(1):266–273

    Article  CAS  Google Scholar 

  37. Lai H, Engle M, Fuchs A et al (2010) Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A 107(6):2419–2424

    Article  CAS  Google Scholar 

  38. Lai H, He J, Hurtado J et al (2014) Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol J 12(8):1098–1107

    Article  CAS  Google Scholar 

  39. He J, Lai H, Brock C et al (2012) A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol 2012:1–10. https://doi.org/10.1155/2012/106783

    Article  Google Scholar 

  40. Yang M, Dent M, Lai H et al (2017) Immunization of Zika virus envelope protein domain III induces specific and neutralizing immune responses against Zika virus. Vaccine 35(33):4287–4294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Esqueda, A., Chen, Q. (2021). Development and Expression of Subunit Vaccines Against Viruses in Plants. In: Lucas, A.R. (eds) Viruses as Therapeutics. Methods in Molecular Biology, vol 2225. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1012-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1012-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1011-4

  • Online ISBN: 978-1-0716-1012-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics