Skip to main content

Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2212))

Abstract

Transcriptome-wide association studies (TWASs) integrate expression quantitative trait loci (eQTLs) studies with genome-wide association studies (GWASs) to prioritize candidate target genes for complex traits. TWASs have become increasingly popular. They have been used to analyze many complex traits with expression profiles from different tissues, successfully enhancing the discovery of genetic risk loci for complex traits. Though conceptually straightforward, some steps are required to perform the TWAS properly. Here we provide a step-by-step guide to integrate eQTL data with both GWAS individual-level data and GWAS summary statistics from complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert FW, Kruglyak L (2015) The role of regulatory variation in complex traits and disease. Nat Rev Genet 16(4):197

    Article  CAS  Google Scholar 

  2. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT (2010) Data quality control in genetic case-control association studies. Nat Protoc 5(9):1564

    Article  CAS  Google Scholar 

  3. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184

    Article  CAS  Google Scholar 

  4. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, Gazal S, Loh P-R, Lareau C, Shoresh N et al (2018) Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 50(4):621

    Article  CAS  Google Scholar 

  5. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Nicolae DL, Cox NJ et al (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47(9):1091

    Article  CAS  Google Scholar 

  6. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, De Geus EJC, Boomsma DI, Wright FA et al (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48(3):245

    Article  CAS  Google Scholar 

  7. Hao X, Zeng P, Zhang S, Zhou X (2018) Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies. PLoS Genet 14(1):e1007186

    Article  Google Scholar 

  8. Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, Yu Z, Li B, Gu J, Muchnik S et al (2019) A statistical framework for cross-tissue transcriptome-wide association analysis. Technical report, Nature Publishing Group

    Book  Google Scholar 

  9. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N et al (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580

    Article  CAS  Google Scholar 

  10. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B (2017) Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet 100(3):473–487

    Article  CAS  Google Scholar 

  11. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195

    Article  CAS  Google Scholar 

  12. Nagpal S, Meng X, Epstein MP, Tsoi LC, Patrick M, Gibson G, De Jager PL, Bennett DA, Wingo AP, Wingo TS et al (2019) TIGAR: an improved Bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am J Hum Genet 105:258–266

    Article  CAS  Google Scholar 

  13. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6(4):e1000888

    Article  Google Scholar 

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  Google Scholar 

  15. Shi X, Chai X, Yang Y, Cheng Q, Jiao Y, Huang J, Yang C, Liu J (2019) A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies. bioRxiv. https://doi.org/10.1101/789396

  16. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22

    Article  CAS  Google Scholar 

  17. Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A, Quertermous T, Hao K et al (2019) Opportunities and challenges for transcriptome-wide association studies. Nat Genet 51(4):592

    Article  CAS  Google Scholar 

  18. Yang C, Wan X, Lin X, Chen M, Zhou X, Liu J (2018) CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics 35(10):1644–1652

    Article  Google Scholar 

  19. Yang Y, Shi X, Jiao Y, Huang J, Chen M, Zhou X, Sun L, Lin X, Yang C, Liu J (2019) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. bioRxiv, 652263. https://doi.org/10.1093/bioinformatics/btz880

Download references

Acknowledgements

This work was supported by grant R-913-200-098-263 from the Duke-NUS Medical School, and AcRF Tier 2 (MOE2016-T2-2-029, MOE2018-T2-1-046 and MOE2018-T2-2-006) from the Ministry of Education, Singapore, and grant No. 71501089 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shi, X., Yang, C., Liu, J. (2021). Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies. In: Wong, KC. (eds) Epistasis. Methods in Molecular Biology, vol 2212. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0947-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0946-0

  • Online ISBN: 978-1-0716-0947-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics