Skip to main content

SNPInt-GPU: Tool for Epistasis Testing with Multiple Methods and GPU Acceleration

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2212))

Abstract

We present SNPInt-GPU, a software providing several methods for statistical epistasis testing. SNPInt-GPU supports GPU acceleration using the Nvidia CUDA framework, but can also be used without GPU hardware. The software implements logistic regression (as in PLINK epistasis testing), BOOST, log-linear regression, mutual information (MI), and information gain (IG) for pairwise testing as well as mutual information and information gain for third-order tests. Optionally, r2 scores for testing for linkage disequilibrium (LD) can be calculated on-the-fly. SNPInt-GPU is publicly available at GitHub. The software requires a Linux-based operating system and CUDA libraries. This chapter describes detailed installation and usage instructions as well as examples for basic preliminary quality control and analysis of results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abegaz F, Lishout FV, John JMM, Chiachoompu K, Bhardwaj A, Gusareva ES, Wei Z, Hakonarson H, Steen KV, On behalf of the International IBD Genetics Consortium (2019) Epistasis detection in genome-wide screening for complex human diseases in structured populations. Syst Med 2(1). https://doi.org/10.1089/sysm.2019.0003

  2. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:1–16. https://doi.org/10.1186/s13742-015-0047-8

    Article  Google Scholar 

  3. Free Software Foundation, Inc. GNU General Public License. https://www.gnu.org/licenses/gpl-3.0.html

  4. Genetic Analysis of Psoriasis Consortium et al (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42:985–990. https://doi.org/10.1038/ng.694

    Article  Google Scholar 

  5. Gusareva ES, van Steen K (2014) Practical aspects of genome-wide association interaction analysis. Hum Genet 133:1343–1358. https://doi.org/10.1007/s00439-014-1480-y

    Article  Google Scholar 

  6. Jakulin A, Bratko I (2003) Analyzing attribute dependencies. In: Knowledge discovery in databases: PKDD 2003, pp 229–240. https://doi.org/10.1007/978-3-540-39804-2_22

  7. Jakulin A, Bratko I (2004) Quantifying and visualizing attribute interactions: an approach based on entropy. arXiv:cs.AI/0308002v3

    Google Scholar 

  8. Kässens JC, Wienbrandt L, González-Domínguez J, Schmidt B, Schimmler M (2015) High-speed exhaustive 3-locus interaction epistasis analysis on FPGAs. J Comput Sci 9:131–136. https://doi.org/10.1016/j.jocs.2015.04.030

    Article  Google Scholar 

  9. Kässens JC, Wienbrandt L et al (2016) Combining GPU and FPGA technology for efficient exhaustive interaction analysis in GWAS. In: 2016 IEEE 27th international conference on ASAP, pp 170–175. https://doi.org/10.1109/ASAP.2016.7760788

  10. Keaton JM, Hellwege JN, Ng MCY et al (2016) Genome-wide interaction with selected type 2 diabetes loci reveals novel loci for type 2 diabetes in African Americans. Pac Symp Biocomput 22:242–253. https://doi.org/10.1142/9789813207813_0024

    PubMed Central  Google Scholar 

  11. Kirino Y, Bertsias G, Ishigatsubo Y et al. (2013) Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 45:202–207. https://doi.org/10.1038/ng.2520

    Article  CAS  Google Scholar 

  12. Purcell S, Chang C PLINK v1.90p 64-bit (9 Jan 2018). www.cog-genomics.org/plink/1.9/

  13. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559–575. https://doi.org/10.1086/519795

    Article  CAS  Google Scholar 

  14. The Australo-Anglo-American Spondyloarthritis Consortium (TASC) et al (2011) Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 43:761–767. https://doi.org/10.1038/ng.873

    Article  Google Scholar 

  15. The R Foundation: The R Project for Statistical Computing. www.r-project.org

  16. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA, Heberling T, Fisher JM, Moore JH (2012) GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min 5(16). https://doi.org/10.1186/1756-0381-5-16

  17. Wan X, Yang C, Yang Q et al (2010) BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet 87(3):325–340. https://doi.org/10.1016/j.ajhg.2010.07.021

    Article  CAS  Google Scholar 

  18. Wienbrandt L, Kässens JC et al (2017) Fast genome-wide third-order SNP interaction tests with information gain on a low-cost heterogeneous parallel FPGA-GPU computing architecture. Proc Comput Sci 108:596–605. https://doi.org/10.1016/j.procs.2017.05.210

    Article  Google Scholar 

  19. Wienbrandt L, Kässens JC, Hübenthal M, Ellinghaus D (2018) 1,000× faster than PLINK: genome-wide epistasis detection with logistic regression using combined FPGA and GPU accelerators. In: Shi Y, Fu H, Tian Y, Krzhizhanovskaya VV, Lees MH, Dongarra J, Sloot PMA (eds) Computational science – ICCS 2018. Springer International Publishing, Cham, pp 368–381. https://doi.org/10.1007/978-3-319-93701-4_28

    Chapter  Google Scholar 

  20. Wienbrandt L, Kässens JC, Hübenthal M, Ellinghaus D (2019) 1000× faster than PLINK: combined FPGA and GPU accelerators for logistic regression-based detection of epistasis. J Comput Sci 30:183–193. https://doi.org/10.1016/j.jocs.2018.12.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wienbrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wienbrandt, L., Kässens, J.C., Ellinghaus, D. (2021). SNPInt-GPU: Tool for Epistasis Testing with Multiple Methods and GPU Acceleration. In: Wong, KC. (eds) Epistasis. Methods in Molecular Biology, vol 2212. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0947-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0947-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0946-0

  • Online ISBN: 978-1-0716-0947-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics