Skip to main content

Synthesis and Application of Peptide–siRNA Nanoparticles from Disulfide-Constrained Cyclic Amphipathic Peptides for the Functional Delivery of Therapeutic Oligonucleotides to the Lung

  • Protocol
  • First Online:
Polypeptide Materials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2208))

Abstract

The potential of RNAi therapies has been largely impeded by the inherent challenges in the functional delivery of siRNA to cells. Herein, we describe protocols for the synthesis and characterization of novel peptide–siRNA nanoparticles prepared from disulfide-constrained amphipathic peptides complexed with siRNA as promising siRNA delivery vectors. We also describe protocols for the application of these nanoparticles to the in vitro and in vivo delivery of siRNA to lung cells for the functional knockdown of lung proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  Google Scholar 

  2. Tatiparti K, Sau S, Kashaw SK, Iyer AK (2017) siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials 7(4):77

    Article  Google Scholar 

  3. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  4. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129

    Article  CAS  Google Scholar 

  5. Beierlein JM, Mcnamee LM, Ledley FD (2017) As Technologies for nucleotide therapeutics mature, products emerge. Mol Ther Nucleic Acid 9:379–386

    Article  CAS  Google Scholar 

  6. Garber K (2017) Worth the RISC? Nat Biotechnol 35:198

    Article  CAS  Google Scholar 

  7. Chakraborty C, Sharma AR, Sharma G et al (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143

    Article  CAS  Google Scholar 

  8. Garber K (2018) Alnylam launches era of RNAi drugs. Nat Biotechnol 36:777

    Article  CAS  Google Scholar 

  9. Ho W, Zhang X-Q, Xu X (2016) Biomaterials in siRNA delivery: a comprehensive review. Adv Healthc Mater 5:2715–2731

    Article  CAS  Google Scholar 

  10. Osborn MF, Khvorova A (2018) Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther 28:128–136

    Article  CAS  Google Scholar 

  11. Juliano RL, Ming X, Nakagawa O (2012) Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug Chem 23:147–157

    Article  CAS  Google Scholar 

  12. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16:543–552

    Article  CAS  Google Scholar 

  13. Endoh T, Ohtsuki T (2009) Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev 61:704–709

    Article  CAS  Google Scholar 

  14. Tai W, Gao X (2017) Functional peptides for siRNA delivery. Adv Drug Deliv Rev 110–111:157–168

    Article  Google Scholar 

  15. Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10:69–86

    Article  CAS  Google Scholar 

  16. Welch JJ, Swanekamp RJ, King C et al (2016) Functional delivery of siRNA by disulfide-constrained cyclic amphipathic peptides. ACS Med Chem Lett 7:584–589

    Article  CAS  Google Scholar 

  17. Bowerman CJ, Nilsson BL (2010) A reductive trigger for peptide self-assembly and hydrogelation. J Am Chem Soc 132:9526–9527

    Article  CAS  Google Scholar 

  18. Mandal D, Nasrolahi Shirazi A, Parang K (2011) Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew Chem Int Ed Engl 50:9633–9637

    Article  CAS  Google Scholar 

  19. Aitken A, Learmonth M (2009) In: Walker JM (ed) Estimation of disulfide bonds using Ellman’s reagent BT - the protein protocols handbook. Humana Press, Totowa, NJ, pp 1053–1055

    Google Scholar 

  20. O’Nuallain B, Thakur AK, Williams AD et al (2006) Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol 413:34–74

    Article  Google Scholar 

  21. Chan W, White P (1999) Fmoc solid phase peptide synthesis: a practical approach. OUP, Oxford

    Google Scholar 

  22. Han Y, Albericio F, Barany G (1997) Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide Synthesis1,2. J Org Chem 62:4307–4312

    Article  CAS  Google Scholar 

  23. Lukszo J, Patterson D, Albericio F, Kates SA (1996) 3-(1-Piperidinyl)alanine formation during the preparation ofC-terminal cysteine peptides with the Fmoc/t-Bu strategy. Lett Pept Sci 3:157–166

    Article  CAS  Google Scholar 

  24. Cline DJ, Thorpe C, P Schneider J (2004) General method for facile intramolecular disulfide formation in synthetic peptides. Anal Biochem 335:168–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (DMR-1148836) and the National Institutes of Health (R01HL138538, R01HL120521, and EB9903). We thank Karen Bentley and Gayle Schneider of the University of Rochester Medical Center Electron Microscopy Core for assistance with transmission electron microscopy and Jermaine Jenkins of the University of Rochester Medical Center for assistance with dynamic light scattering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley L. Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Welch, J.J., Dean, D.A., Nilsson, B.L. (2021). Synthesis and Application of Peptide–siRNA Nanoparticles from Disulfide-Constrained Cyclic Amphipathic Peptides for the Functional Delivery of Therapeutic Oligonucleotides to the Lung. In: Ryadnov, M. (eds) Polypeptide Materials. Methods in Molecular Biology, vol 2208. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0928-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0928-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0927-9

  • Online ISBN: 978-1-0716-0928-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics