Skip to main content

Genome Variation and Precision Medicine in Systemic Lupus Erythematosus

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease which is facing the difficulties in treatment. Genetics play an important role in SLE. Several studies have shown that genetic factors not only affect the development of SLE, but also affect its clinical progress. In this review article, we focus on exploring the influence of genetics on different aspects of SLE pathogenesis, clinical course, and treatment and will provide some references in further precision medicine for SLE patients. The coming era of precision medicine, SLE patients will be stratified by genetic profiling. This will enable us to make more effective and precise choices of treatment plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman A, Isenberg DA (1976) Systemic lupus erythematosus. Ryoikibetsu Shokogun Shirizu 358(9281):585–585

    Google Scholar 

  2. Domeier PP, Schell SL, Rahman ZS (2017) Spontaneous germinal centers and autoimmunity. Autoimmunity 50(1):4–18

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Van VRF, Mosca M, Bertsias G et al (2014) Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis 73(6):958–967

    Google Scholar 

  4. Zen M, Iaccarino L, Gatto M et al (2015) Prolonged remission in Caucasian patients with SLE: prevalence and outcomes. Ann Rheumatic Dis 74:2117–2122. https://doi.org/10.1136/annrheumdis-2015-207347

    Article  CAS  Google Scholar 

  5. Urowitz MB, Feletar M, Bruce IN et al (2005) Prolonged remission in systemic lupus erythematosus. J Rheumatol 32(8):1467–1472

    PubMed  Google Scholar 

  6. Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41(Complete):25–33

    CAS  PubMed  Google Scholar 

  7. Tsokos GC, Lo MS, Reis PC et al (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(12):716–730

    CAS  PubMed  Google Scholar 

  8. Rees F, Doherty M, Grainge MJ et al (2017) The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology 56:1945

    PubMed  Google Scholar 

  9. Lim SS, Bayakly AR, Helmick CG et al (2014) The incidence and prevalence of systemic lupus erythematosus, 2002-2004: the Georgia Lupus Registry. Arthritis Rheumatol 66(2):357–368

    PubMed  PubMed Central  Google Scholar 

  10. Aslani S, Rezaei R, Jamshidi A et al (2018) Genetic and epigenetic etiology of autoimmune diseases: lessons from twin studies. Rheumatol Res 3:45–57

    Google Scholar 

  11. Kuo CF, Grainge MJ, Valdes AM et al (2015) Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern Med 175(9):1518–1526

    PubMed  Google Scholar 

  12. Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Saeed M (2017) Lupus pathobiology based on genomics. Immunogenetics 69(1):1–12

    CAS  PubMed  Google Scholar 

  14. Yasutomo K, Horiuchi T, Kagami S et al (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28(4):313–314

    CAS  PubMed  Google Scholar 

  15. Al-Mayouf SM, Sunker A, Abdwani R et al (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43(12):1186–1188

    CAS  PubMed  Google Scholar 

  16. Belot A, Kasher PR, Trotter EW et al (2013) Protein kinase Cdelta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum 65(8):2161–2171

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mecklenbrauker I, Saijo K, Zheng NY et al (2002) Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature 416(6883):860–865

    PubMed  Google Scholar 

  18. Miyamoto A, Nakayama K, Imaki H et al (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 416(6883):865–869

    CAS  PubMed  Google Scholar 

  19. Deng Y, Tsao BP (2017) Updates in lupus genetics. Curr Rheumatol Rep 19(11):68

    PubMed  Google Scholar 

  20. Bentham J, Morris DL, Graham C, Deborah S et al (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47(12):1457–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun C, Molineros JE, Looger LL et al (2016) High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 48(3):323–330

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Armstrong DL, Zidovetzki R, Alarcón-Riquelme ME et al (2014) GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 15(6):347–354

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Farh KH, Marson A, Zhu J et al (2014) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518(7539):337–343

    PubMed  PubMed Central  Google Scholar 

  24. Chung SA, Brown EE, Williams AH et al (2014) Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol 25(12):2859–2870

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor KE, Chung SA, Graham RR et al (2011) Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet 7(2):e1001311

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Relle M, Schwarting A (2012) Role of MHC-linked susceptibility genes in the pathogenesis of human and murine lupus. Clin Dev Immunol 2012(2):584374

    PubMed  PubMed Central  Google Scholar 

  27. Castano-Rodriguez N, Diaz-Gallo LM, Pineda-Tamayo R et al (2008) Meta-analysis of HLA-DRB1 and HLA-DQB1 polymorphisms in Latin American patients with systemic lupus erythematosus. Autoimmun Rev 7(4):322–330

    CAS  PubMed  Google Scholar 

  28. Niu Z, Zhang P, Tong Y (2014) Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: a meta-analysis. Int J Rheum Dis 18(1):17–28

    PubMed  Google Scholar 

  29. Morris DL, Taylor KE, Fernando MM et al Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 91(5):778–793

    Google Scholar 

  30. Zhang J, Zhan W, Yang B et al (2017) Genetic polymorphisms of rs3077 and rs9277535 in HLA-DP associated with systemic lupus erythematosus in a Chinese population. Sci Rep 7:39757

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Endreffy E (2003) HLA class II allele polymorphism in Hungarian patients with systemic lupus erythematosus. Ann Rheum Dis 62(10):1017–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wadi W, Elhefny NEAM, Mahgoub EH et al (2014) Relation between HLA typing and clinical presentations in systemic lupus erythematosus patients in Al-Qassim region, Saudi Arabia. Int J Health Sci 8(2):159–165

    Google Scholar 

  33. Vasconcelos C, Carvalho C, Leal B et al (2009) HLA in portuguese systemic lupus erythematosus patients and their relation to clinical features. Ann N Y Acad Sci 1173(1):575–580

    CAS  PubMed  Google Scholar 

  34. Hachicha H, Kammoun A, Mahfoudh N et al (2018) Human leukocyte antigens-DRB1*03 is associated with systemic lupus erythematosus and anti-SSB production in South Tunisia. Int J Health Sci 12(1):21–27

    Google Scholar 

  35. Rönnblom L, Eloranta ML, Alm GV (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 54(2):408–420

    PubMed  Google Scholar 

  36. Graham RR, Kozyrev SV, Baechler EC et al (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38(5):550–555

    CAS  PubMed  Google Scholar 

  37. Graham DSC, Manku H, Wagner S et al (2006) Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum Mol Genet 16(6):579–591

    PubMed Central  Google Scholar 

  38. Reddy MVPL, Velázquez-Cruz R, Baca V et al (2007) Genetic association ofIRF5with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans. Hum Genet 121(6):721–727

    PubMed  Google Scholar 

  39. Kottyan LC, Zoller EE, Bene J et al (2015) The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 24(2):582–596

    CAS  PubMed  Google Scholar 

  40. Raj P, Rai E, Song R et al (2016) Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 5:e12089

    PubMed  PubMed Central  Google Scholar 

  41. Remmers EF, Plenge RM, Lee AT et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357(10):977–986

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nageeb RS, Omran AA, Nageeb GS (et al, 2018) STAT4 gene polymorphism in two major autoimmune diseases (multiple sclerosis and juvenile-onset systemic lupus erythematosus) and its relation to disease severity. Egypt J Neurol Psychiatr Neurosurg 54(1):16

    Google Scholar 

  43. Chung SA, Criswell LA (2008) PTPN22: its role in SLE and autoimmunity. Autoimmunity 40(8):582–590

    Google Scholar 

  44. Bolin K, Sandling JK, Zickert A et al (2013) Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS One 8(12):e84450

    PubMed  PubMed Central  Google Scholar 

  45. Harley JB, Alarcón-Riquelme ME, Criswell LA et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40(2):204–210

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kimhoward X, Maiti AK, Anaya JM et al (2010) ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis 69(7):1329

    Google Scholar 

  47. Yang W, Zhao M, Hirankarn N et al (2009) ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum Mol Genet 18(11):2063–2070

    PubMed  PubMed Central  Google Scholar 

  48. Kozyrev SV, Abelson AK, Wojcik J et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40(2):211–216

    CAS  PubMed  Google Scholar 

  49. Bentham J, Morris DL, Cunninghame Graham DS et al (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47(12):1457–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo L, Deshmukh H, Lu R et al (2009) Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-derived population. Genes Immun 10(5):531–538

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung SA, Taylor KE, Graham RR et al (2011) Differential genetic associations for systemic lupus erythematosus based on anti–dsDNA Autoantibody Production. PLoS Genet 7(3):e1001323

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ellyard JI, Jerjen R, Martin JL et al (2016) Identification of a pathogenic variant in TREX1 in early-onset cerebral SLE by whole-exome sequencing. Pathology 48:S47

    Google Scholar 

  53. Sarah MG, Stewart W, Joanna W et al (2018) Neurological disease in lupus: toward a personalized medicine approach. Front Immunol 9:1146

    Google Scholar 

  54. Ho RC, Ong H, Thiaghu C, Lu Y et al (2016) Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol 43(3):541–551

    PubMed  Google Scholar 

  55. Ramirez GA, Lanzani C, Bozzolo EP et al (2015) TRPC6 gene variants and neuropsychiatric lupus. J Neuroimmunol 288:21–24

    CAS  PubMed  Google Scholar 

  56. Arinuma Y (2018) Antibodies and the brain: anti-N-methyl-D-aspartate receptor antibody and the clinical effects in patients with systemic lupus erythematosus. Curr Opin Neurol 31:294

    CAS  PubMed  Google Scholar 

  57. Zou YF, Xu JH, Gu YY et al (2016) Single nucleotide polymorphisms of HSP90AA1 gene influence response of SLE patients to glucocorticoids treatment. Springerplus 5(1):222

    PubMed  PubMed Central  Google Scholar 

  58. Sun XX, Li SS, Zhang M et al (2017) Association of HSP90B1 genetic polymorphisms with efficacy of glucocorticoids and improvement of HRQoL in systemic lupus erythematosus patients from Anhui Province. Am J Clin Exp Immunol 7(2):27–39

    Google Scholar 

  59. López P, Gómez J, Mozo L et al (2006) Cytokine polymorphisms influence treatment outcomes in SLE patients treated with antimalarial drugs. Arthritis Res Ther 8(2):R42

    PubMed  PubMed Central  Google Scholar 

  60. Wang HN, Zhu XY, Zhu Y et al (2015) The GSTA1 polymorphism and cyclophosphamide therapy outcomes in lupus nephritis patients. Clin Immunol 160(2):342–348

    CAS  PubMed  Google Scholar 

  61. Audemard-Verger A, Silva NM, Verstuyft C et al (2016) Glutathione S transferases polymorphisms are independent prognostic factors in lupus nephritis treated with cyclophosphamide. PLoS One 11(3):e0151696

    PubMed  PubMed Central  Google Scholar 

  62. Kim K, Bang SY, Joo YB et al (2016) Response to intravenous cyclophosphamide treatment for lupus nephritis associated with polymorphisms in the FCGR2B-FCRLA locus. J Rheumatol 43(6):1045–1049

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, R., Hu, Y., Bo, L. (2020). Genome Variation and Precision Medicine in Systemic Lupus Erythematosus. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics