Skip to main content

CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2200))

Abstract

CRISPR/Cas9 system has emerged as a powerful genome engineering tool to study gene function and improve plant traits. Genome editing is achieved at a specific genome sequence by Cas9 endonuclease to generate double standard breaks (DSBs) directed by short guide RNAs (sgRNAs). The DSB is repaired by error-prone nonhomologous end joining (NHEJ) or error-free homology-directed repair (HDR) pathways, resulting in gene mutation or sequence replacement, respectively. These cellular DSB repair pathways can be exploited to knock out or replace genes. Also, cytidine or adenine base editors (CBEs or ABEs) fused to catalytically dead Cas9 (dCas9) or nickase Cas9 (nCas9) are used to perform precise base editing without generating DSBs. In this chapter, we describe a detailed procedure to carry out single/multiple gene mutations and precise base editing in the Arabidopsis genome by using CRISPR/Cas9-based system. Specifically, the steps of target gene selection, sgRNA design, vector construction, transformation, and analysis of transgenic lines are described. The protocol is potentially adaptable to perform genome editing in other plant species such as rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rai A et al (2019) A new era in plant functional genomics. Curr Opin Syst Biol 15:58–67

    Article  Google Scholar 

  2. Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536

    Article  CAS  Google Scholar 

  3. Mba C, Afza R, Bado S, Jian SM (2010) Induced mutagenesis in plants using physical and chemical agents. Plant Cell Cult Essent Methods 20:111–130

    Article  Google Scholar 

  4. Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9:103–111

    Article  CAS  Google Scholar 

  5. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1077

    Article  CAS  Google Scholar 

  6. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131

    Article  CAS  Google Scholar 

  7. Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428:963–989

    Article  CAS  Google Scholar 

  8. Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  Google Scholar 

  9. Hua K et al (2019) Perspectives on the application of genome editing technologies incrop breeding. Mol Plant 12:1047–1059

    Article  CAS  Google Scholar 

  10. Zhang Z et al (2016) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35(7):1519–1533

    Article  CAS  Google Scholar 

  11. Feng Z et al (2018) A highly efficient cell division-specific CRISPR/Cas9 system generates homozygous mutants for multiple genes in Arabidopsis. Int J Mol Sci 19:3925

    Article  Google Scholar 

  12. Miao C et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci U S A 115:6058–6063

    Article  CAS  Google Scholar 

  13. Wang ZP et al (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144

    Article  Google Scholar 

  14. Mao Y et al (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14:519–532

    Article  CAS  Google Scholar 

  15. Eid A, Ali Z, Mahfouz MM (2016) High efficiency of targeted mutagenesis in arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease. Plant Cell Rep 35:1555–1558

    Article  CAS  Google Scholar 

  16. Yan L et al (2015) High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823

    Article  CAS  Google Scholar 

  17. Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58:46–56

    Article  CAS  Google Scholar 

  18. Miki D et al (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9:1967

    Article  Google Scholar 

  19. Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors: genome editing without double-strand breaks. Biochem J 475:1955–1964

    Article  CAS  Google Scholar 

  20. Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525

    Article  CAS  Google Scholar 

  21. Shimatani Z et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  Google Scholar 

  22. Hua K et al (2018) Precise A·T to G·C base editing in the rice genome. Mol Plant 11:627–630

    Article  CAS  Google Scholar 

  23. Hua K et al (2019) Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J 17:499–504

    Article  Google Scholar 

  24. Zhang X et al (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  Google Scholar 

  25. Paquet D et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129

    Article  CAS  Google Scholar 

  26. Molla KA, Yang Y (2019) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37:1121–1142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Miki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miki, D., Zinta, G., Zhang, W., Peng, F., Feng, Z., Zhu, JK. (2021). CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics