Skip to main content

Flow Cytometry and Sorting in Arabidopsis

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2200))

Abstract

Flow cytometry and sorting represents a valuable and mature experimental platform for the analysis of cellular populations. Applications involving higher plants started to emerge around 40 years ago and are now widely employed both to provide unique information regarding basic and applied questions in the biosciences and to advance agricultural productivity in practical ways. Further development of this platform is being actively pursued, and this promises additional progress in our understanding of the interactions of cells within complex tissues and organs. Higher plants offer unique challenges in terms of flow cytometric analysis, first since their organs and tissues are, almost without exception, three-dimensional assemblies of different cell types held together by tough cell walls, and, second, because individual plant cells are generally larger than those of mammals.

This chapter, which updates work last reviewed in 2014 [Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez Serrano JJ, Salinas J (eds) Arabidopsis Protocols, 3rd ed. Methods in molecular biology, vol 1062. Humana Press, Totowa, pp 509–537], describes the application of techniques of flow cytometry and sorting to the model plant species Arabidopsis thaliana, in particular emphasizing (a) fluorescence labeling in vivo of specific cell types and of subcellular components, (b) analysis using both conventional cytometers and spectral analyzers, (c) fluorescence-activated sorting of protoplasts and nuclei, and (d) transcriptome analyses using sorted protoplasts and nuclei, focusing on population analyses at the level of single protoplasts and nuclei. Since this is an update, details of new experimental methods are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez Serrano JJ, Salinas J (eds) Arabidopsis Protocols, 3rd ed. Methods in molecular biology, vol 1062. Humana Press, Totowa, pp 509–537

    Google Scholar 

  2. Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luria G, Rutley N, Lazar I, Harper JF, Miller G (2019) Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress. Plant J 98:942–952

    Article  CAS  PubMed  Google Scholar 

  6. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  CAS  PubMed  Google Scholar 

  7. Galbraith DW, Harkins KR, Maddox JR, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  8. Harkins KR, Galbraith DW (1984) Flow sorting and culture of plant protoplasts. Physiol Plant 60:43–52

    Article  Google Scholar 

  9. Galbraith DW (1990) Isolation and flow cytometric characterization of plant protoplasts. Methods Cell Biol 33:527–547

    Article  CAS  PubMed  Google Scholar 

  10. Galbraith DW, Bartos J, Dolezel J (2005) In: Sklar LA (ed) Flow cytometry and cell sorting in plant biotechnology. Oxford University Press, New York, pp 291–322

    Google Scholar 

  11. Galbraith DW, Grebenok RJ, Lambert GM, Sheen J (1995) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Cell Biol 50:3–12

    Article  CAS  PubMed  Google Scholar 

  12. Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784

    Article  CAS  PubMed  Google Scholar 

  13. Galbraith DW, Herzenberg LA, Anderson M (1999) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Enzymol 320:296–315

    Article  Google Scholar 

  14. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  CAS  PubMed  Google Scholar 

  15. Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell-type specific expression profiling in plants using fluorescent reporter lines, protoplasting, and cell sorting. Nat Methods 2:1–5

    Article  Google Scholar 

  16. Yadav RK, Girke T, Pasala S, Xie MT, Reddy V (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106:4941–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  18. Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Afonso CL, Harkins KR, Thomas-Compton M, Krejci A, Galbraith DW (1985) Production of somatic hybrid plants through fluorescence activated sorting of protoplasts. Nat Biotechnol 3:811–816

    Article  Google Scholar 

  20. Chattopadhyay PK, Perfetto SP, Yu J, Roederer M (2010) The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:334–348

    Article  CAS  PubMed  Google Scholar 

  21. Nettey L, Giles AJ, Chattopadhyay PK (2018) OMIP-050: a 28-color/30-parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules. Cytometry A 93A:1094–1096

    Article  Google Scholar 

  22. Chattopadhyay PK, Winters AF, Lomas WE III, Laino AS, Woods DM (2019) High-parameter single-cell analysis. Annu Rev Anal Chem 12:411–430

    Article  Google Scholar 

  23. Galbraith DW, Mauch TJ (1980) Identification of fusion of plant protoplasts .2. Conditions for the reproducible fluorescence labeling of protoplasts derived from mesophyll tissue. Z Pflanzenphysiol 98:129–140

    Article  Google Scholar 

  24. Galbraith DW, Harkins KR, Jefferson RA (1988) Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry 9:75–83

    Article  CAS  PubMed  Google Scholar 

  25. Harkins KR, Jefferson RA, Kavanagh TA, Bevan MW, Galbraith DW (1990) Expression of photosynthesis-related gene fusions is restricted by cell-type in transgenic plants and in transfected protoplasts. Proc Natl Acad Sci U S A 87:816–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crumpton-Taylor M, Grandison S, Png KM, Bushby AJ, Smith AM (2012) Control of starch granule numbers in Arabidopsis chloroplasts. Plant Physiol 158:905–916

    Article  CAS  PubMed  Google Scholar 

  27. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  28. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    Article  CAS  PubMed  Google Scholar 

  29. Snapp EL (2009) Fluorescent Proteins: a cell biologist’s user guide. Trends Cell Biol 19:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177

    Article  CAS  PubMed  Google Scholar 

  31. Ckurshumova W, Caragea AE, Goldstein RS, Berleth T (2011) Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants. Mol Plant 4:794–804

    Article  CAS  PubMed  Google Scholar 

  32. Galbraith DW (2004) The rainbow of fluorescent proteins. Methods Cell Biol 75:153–169

    Article  CAS  PubMed  Google Scholar 

  33. Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: fluorescent protein structure and color variants. Cold Spring Harb Protoc 2009. https://doi.org/10.1101/pdb.top63

  34. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  35. Marquès-Bueno MM, Morao AK, Cayrel A, Platre MP, Barberon M, Caillieux E, Colot V, Jaillais Y, Roudier F, Vert G (2016) A versatile multisite gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J 85:320–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Machin FQ, Beckers M, Tian X, Fairnie A, Cheng T, Scheible WR, Doerner P (2019) Inducible reporter/driver lines for the Arabidopsis root with intrinsic reporting of activity state. Plant J 98:153–164

    Article  CAS  PubMed  Google Scholar 

  37. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boisnard-Lorig C, Colon-Carmona A, Bauch W, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cutler SR, Ehrhardt DW, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97:3718–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grebenok RJ, Pierson EA, Lambert GM, Gong F-C, Afonso CL, Haldeman-Cahill R, Carrington JC, Galbraith DW (1997) Green-fluorescent protein fusions for efficient characterization of nuclear localization signals. Plant J 11:573–586

    Article  CAS  PubMed  Google Scholar 

  42. Hilleary R, Choi WG, Kim SH, Lim SD, Gilroy S (2018) Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants. Curr Opin Plant Biol 46:32–38

    Article  CAS  PubMed  Google Scholar 

  43. Millar AH, Carrie C, Pogson B, Whelan J (2009) Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins. Plant Cell 21:1625–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsien RY (1997) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  Google Scholar 

  45. Bogdanov AM, Mishin AS, Yampolsky IV, Belousov VV, Chudakov DM, Subach FV, Verkhusha VV, Lukyanov S, Lukyanov KA (2009) Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5:459–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grebenok RJ, Lambert GM, Galbraith DW (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J 12:685–696

    Article  CAS  Google Scholar 

  47. Chytilova E, Macas J, Sliwinska E, Rafelski S, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang CQ, Gong FC, Lambert GM, Galbraith DW (2005) Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods 1:7. https://doi.org/10.1186/1746-4811-1-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang CQ, Barthelson RA, Lambert GM, Galbraith DW (2008) Characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147:30–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Telford WG (2018) Overview of lasers for flow cytometry. In: Hawley T, Hawley R (eds) Flow cytometry protocols. Methods in molecular biology, vol 1678. Humana Press, New York, pp 447–479

    Chapter  Google Scholar 

  51. Lawrence WG, Varadi G, Entine G, Podniesinski E, Wallace PK (2008) A comparison of avalanche photodiode and photomultiplier tube detectors for flow cytometry. In: Proceedings of SPIE 6859, Imaging, manipulation, and analysis of biomolecules, cells, and tissues VI, 68590M. https://doi.org/10.1117/12.758958

  52. Lawrence WG, Varadi G, Entine G, Podniesinski E, Wallace PK (2008) Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes. Cytometry A 73A:767–776. https://doi.org/10.1002/cyto.a.20595

    Article  CAS  Google Scholar 

  53. Mena MA, Treynor TP, Mayo SL, Daugherty PS (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24:1569–1571

    Article  CAS  PubMed  Google Scholar 

  54. Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV (2011) An enhanced monomeric blue fluorescent protein with high chemical stability of the chromophore. PLoS One 6(12):e28674. https://doi.org/10.1371/journal.pone.0028674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  56. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557

    Google Scholar 

  57. Lin MZ, McKeown MR, Ng H-L, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, Gorodnicheva TV, Strukova L, Shidlovskiy KM, Britanova OV, Zaraisky AG, Lukyanov KA, Loschenov VB, Luker GD, Chudakov DM (2010) Near-infrared fluorescent proteins. Nat Methods 7:827–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hawley TS, Hawley RG, Telford WG (2017) Fluorescent proteins for flow cytometry. Curr Protoc Cytom 80:9.12.1–9.12.20. https://doi.org/10.1002/cpcy.17

    Article  Google Scholar 

  60. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Costantini LM, Baloban M, Markwardt ML, Rizzo M, Guo F, Verkhusha VV, Snapp EL (2015) A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 6:Art No:7670. https://doi.org/10.1038/ncomms8670

    Article  Google Scholar 

  62. Gong F-C, Giddings TH, Meehl JB, Staehelin LA, Galbraith DW (1996) Z-membranes: artificial organelles for over-expressing recombinant integral membrane proteins. Proc Natl Acad Sci U S A 93:2219–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nawy T, Lee J-Y, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  65. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  66. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey PN (2012) High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng XH, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8: Issue: 1 Article Number: e1002446. https://doi.org/10.1371/journal.pgen.1002446

  69. Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, Soderblom EJ, Ohler U, Moseley MA, Grossniklaus U, Benfey PN (2012) The protein expression landscape of the Arabidopsis root. Proc Natl Acad Sci U S A 109:6811–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li M, Doll J, Weckermann K, Oecking C, Berendzen K-W, Schöffl F (2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 89:126–132

    Article  CAS  PubMed  Google Scholar 

  71. Li M, Berendzen K, Schöffl F (2010) Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 73:559–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bargmann BOR, Birnbaum KD (2009) Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts. Plant Physiol 149:1231–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bell PR, Helmsley AR (2000) Green plants: their origin and diversity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  74. Petersson SV, Lindén P, Moritz T, Ljung K (2015) Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics 11:1679–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sparks EE, Benfey PN (2017) Tissue-specific transcriptome profiling in arabidopsis roots. Methods Mol Biol 1610:107–122

    Article  CAS  PubMed  Google Scholar 

  76. Schoft VK, Chumak N, Bindics J, Slusarz L, Twell D, Köhler C, Tamaru H (2015) SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content. Plant Reprod 28:61–72

    Article  CAS  PubMed  Google Scholar 

  77. Zheng XY, Gehring M (2019) Low-input chromatin profiling in Arabidopsis endosperm using CUT&RUN. Plant Reprod 32:63–75

    Article  CAS  PubMed  Google Scholar 

  78. Rutschow HL, Baskin TI, Kramer EM (2014) The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts. New Phytol 204:536–544

    Article  CAS  PubMed  Google Scholar 

  79. Santos MR, Bispo C, Becker JD (2017) Isolation of arabidopsis pollen, sperm cells, and vegetative nuclei by fluorescence-activated cell sorting (FACS). Methods Mol Biol 1669:193–210

    Article  CAS  PubMed  Google Scholar 

  80. Pontvianne F, Boyer-Clavel M, Sáez-Vásquez J (2016) Fluorescence-activated nucleolus sorting in Arabidopsis. Methods Mol Biol 1455:203–211

    Article  CAS  PubMed  Google Scholar 

  81. Novák O, Antoniadi I, Ljung K (2017) High-resolution cell-type specific analysis of cytokinins in sorted root cell populations of Arabidopsis thaliana. Methods Mol Biol 1497:231–248

    Article  PubMed  CAS  Google Scholar 

  82. Dvořáčková M, Raposo B, Matula P, Fuchs J, Schubert V, Peška V, Desvoyes B, Gutierrez C, Fajkus J (2018) Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J Cell Sci 131:jcs202416. https://doi.org/10.1242/jcs.202416

    Article  CAS  PubMed  Google Scholar 

  83. Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, Novák O (2015) Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell 27:1955–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coker TL, Cevik V, Beynon JL, Gifford ML (2015) Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using fluorescence activated cell sorting. Front Plant Sci 6:527. https://doi.org/10.3389/fpls.2015.00527. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mgcina LS, Dubery IA, Piater LA (2015) Comparative conventional- and quantum dot-labeling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts. Front Plant Sci 6:335. https://doi.org/10.3389/fpls.2015.00335

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kolář F, Lučanová M, Záveská E, Fuxová G, Mandáková T, Španiel S, Senko S, Svitok M, Kolník M, Gudžinskas Z, Marhold K (2016) Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae): Cytogeography of Arabidopsis arenosa. Biol J Linn Soc 119:673–688. https://doi.org/10.1111/bij.12479

    Article  Google Scholar 

  87. Frerichs A, Thoma R, Abdallah AT, Frommolt P, Werr W, Chandler JW (2016) The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem. BMC Genomics 17:Article number: 855

    Article  PubMed Central  CAS  Google Scholar 

  88. Wolf DE, Steets JA, Houliston GJ, Takebayashi N (2014) Genome size variation and evolution in allotetraploid Arabidopsis kamchatica and its parents, Arabidopsis lyrata and Arabidopsis helleri. AoB Plants 6:plu025. https://doi.org/10.1093/aobpla/plu025

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kamal KY, Herranz R, van Loon JJWA, Medina FJ (2019) Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. Plant Cell Environ 42:480–494. https://doi.org/10.1111/pce.13422

    Article  CAS  PubMed  Google Scholar 

  90. Fukao Y, Kobayashi M, Zargar SM, Kurata R, Fukui R, Mori IC, Ogata Y (2016) Quantitative proteomic analysis of the response to zinc, magnesium, and calcium deficiency in specific cell types of arabidopsis roots. Proteomes 4:1. https://doi.org/10.3390/proteomes4010001

    Article  CAS  PubMed Central  Google Scholar 

  91. Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA (2014) Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 14:224. https://doi.org/10.1186/s12862-014-0224-x

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li M, Yao T, Li F, Zhang Y, Bai S (2019) Microarray analysis of nitric oxide responsive transcripts in arabidopsis root G2/M junction cells. Int J Agric Biol 21:105–114

    CAS  Google Scholar 

  93. Vergara F, Rymen B, Kuwahara A, Sawada Y, Sato M, Hirai MY (2017) Autopolyploidization, geographic origin, and metabolome evolution in Arabidopsis thaliana. Am J Bot 104:905–914. https://doi.org/10.3732/ajb.1600419. Epub 2017 June 16

    Article  CAS  PubMed  Google Scholar 

  94. Sliwinska E, Mathur J, Bewley JD (2015) On the relationship between endoreduplication and collet hair initiation and tip growth, as determined using six Arabidopsis thaliana root-hair mutants. J Exp Bot 66:3285–3295. https://doi.org/10.1093/jxb/erv136. Epub 2015 Apr 4

    Article  CAS  PubMed  Google Scholar 

  95. Slane D, Kong J, Berendzen KW, Kilian J, Henschen A, Kolb M, Schmid M, Harter K, Mayer U, De Smet I, Bayer M, Jürgens G (2014) Cell type-specific transcriptome analysis in the early Arabidopsis thaliana embryo. Development 141:4831–4840. https://doi.org/10.1242/dev.116459

    Article  CAS  PubMed  Google Scholar 

  96. Boucheron-Dubuisson E, Manzano AI, Le Disquet I, Matía I, Sáez-Vasquez J, van Loon JJ, Herranz R, Carnero-Diaz E, Medina FJ (2016) Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. J Plant Physiol 207:30–41. https://doi.org/10.1016/j.jplph.2016.09.011. Epub 2016 Oct 19

    Article  CAS  PubMed  Google Scholar 

  97. Malhan D, Bhatia S, Yadav RK (2015) Genome wide gene expression analyses of Arabidopsis shoot stem cell niche cell populations. Plant Signal Behav 10:e1011937. https://doi.org/10.1080/15592324.2015.1011937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, Song L, He J, Marchant A, Chen XY, Wu AM (2017) ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol 213:1667–1681. https://doi.org/10.1111/nph.14278. Epub 2016 Nov 7

    Article  CAS  PubMed  Google Scholar 

  99. Zhao L, He J, Cai H, Lin H, Li Y, Liu R, Yang Z, Qin Y (2014) Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. Plant J 80:615–628. https://doi.org/10.1111/tpj.12657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cui W, Wang H, Song J, Cao X, Rogers HJ, Francis D, Jia C, Sun L, Hou M, Yang Y, Tai P, Liu W (2017) Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips. Ecotoxicol Environ Saf 145:569–574

    Article  CAS  PubMed  Google Scholar 

  101. Yadav RK, Tavakkoli M, Xie M, Girke T, Reddy GV (2014) A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141:2735–2744. https://doi.org/10.1242/dev.106104

    Article  CAS  PubMed  Google Scholar 

  102. Coneva V, Chitwood DH (2018) Genetic and developmental basis for increased leaf thickness in the arabidopsis CVI ecotype. Front Plant Sci 9:322. https://doi.org/10.3389/fpls.2018.00322

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cao X, Wang H, Zhuang D, Zhu H, Du Y, Cheng Z, Cui W, Rogers HJ, Zhang Q, Jia C, Yang Y, Tai P, Xie F, Liu W (2018) Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots. Chemosphere 201:586–594. https://doi.org/10.1016/j.chemosphere.2018.03.017. Epub 2018 Mar 3

    Article  CAS  PubMed  Google Scholar 

  104. Song Y, Xiang F, Zhang G, Miao Y, Miao C, Song CP (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 7:181. https://doi.org/10.3389/fpls.2016.00181. eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wu G, Carville JS, Spalding EP (2016) ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle. Plant J 85:209–218. https://doi.org/10.1111/tpj.13095. Epub 2016 Jan 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hamdoun S, Zhang C, Gill M, Kumar N, Churchman M, Larkin JC, Kwon A, Lu H (2016) Differential roles of two homologous cyclin-dependent kinase inhibitor genes in regulating cell cycle and innate immunity in Arabidopsis. Plant Physiol 170:515–527. https://doi.org/10.1104/pp.15.01466

    Article  CAS  PubMed  Google Scholar 

  107. Yang L, Zhao X, Zhu H, Paul M, Zu Y, Tang Z (2014) Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci 5:570. https://doi.org/10.3389/fpls.2014.00570. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hendrix S, Keunen E, Mertens AIG, Beemster GTS, Vangronsveld J, Cuypers A (2018) Cell cycle regulation in different leaves of Arabidopsis thaliana plants grown under control and cadmium-exposed conditions. Environ Exp Bot 155:441–452

    Article  CAS  Google Scholar 

  109. Efroni I, Ip P-L, Nawy T, Mello A, Birnbaum KD (2015) Quantification of cell identity from single-cell gene expression profiles. Genome Biol 16:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Efroni I, Mello A, Nawy T, Ip P-L, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD (2016) Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:1721–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT (2019) Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31:993–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095

    Article  CAS  PubMed  Google Scholar 

  113. Rhee SY, Birnbaum KD, Ehrhardt DW (2019) Towards building a plant cell atlas. Trends Plant Sci 24:303–310. https://doi.org/10.1016/j.tplants.2019.01.006303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W (2019) A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol Plant 12:648–660. https://doi.org/10.1016/j.molp.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  115. Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP (2019) Spatiotemporal developmental trajectories in the arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev Cell 48:840. –852 e845

    Article  CAS  PubMed  Google Scholar 

  116. Ryu KH, Huang L, Kang HM, Schiefelbein J (2019) Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol 179:1444–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, Gouran M, Turco GM, Zhu Y, O’Malley RC, Brady SM, Dickel DE (2019) High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep 27:2241–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O’Shaughnessy AL, Lambert GM, Araúzo-Bravo MJ, Lee J, Fishman M, Lin X, Robbins GE, Lin X, Venepally P, Badger JH, Galbraith DW, Gage FH, Lasken RS (2013) RNA-Seq from single nuclei. Proc Natl Acad Sci U S A 110:19802–19807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Petersson SV, Linden P, Moritz T, Ljung K (2015) Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics 11:1679–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Skene PJ, Henikoff JG, Henikoff S (2018) Targeted in situ genome wide profiling with high efficiency for low cell numbers. Nat Protoc 13:1006–1019

    Article  CAS  PubMed  Google Scholar 

  121. Liu YF, Chen XY, Zhang YQ, Liu J (2019) Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst 144:846–858

    Article  CAS  PubMed  Google Scholar 

  122. Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel LA (2008) Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. Plant Methods 4:9. https://doi.org/10.1186/1746-4811-4-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hirakawa T, Matsunaga S (2016) Three-dimensional, live-cell imaging of chromatin dynamics in plant nuclei using chromatin tagging systems. In: Murata M (ed) Chromosome and genomic engineering in plants, Methods in molecular biology, vol 1469. Humana Press, New York, pp 189–195

    Chapter  Google Scholar 

  124. Ford K, McDonald D, Mali P (2019) Functional genomics via CRISPR-Cas. J Mol Biol 431:48–65. Special Issue: SI

    Article  CAS  PubMed  Google Scholar 

  125. Galbraith DW, Mauch TJ, Shields BA (1981) Analysis of the initial stages of plant protoplast development using 33258 Hoechst: reactivation of the cell cycle. Physiol Plant 51:380–386

    Article  CAS  Google Scholar 

  126. Galbraith DW (1981) Microfluorometric quantitation of cellulose biosynthesis by plant protoplasts using Calcofluor White. Physiol Plant 53:111–116

    Article  CAS  Google Scholar 

  127. Galbraith DW, Shields BA (1982) The effects of inhibitors of cell wall synthesis on tobacco protoplast development. Physiol Plant 55:25–30

    Article  CAS  Google Scholar 

  128. Galbraith DW, Lucretti S (2000) Large particle sorting. In: Radbruch A (ed) Flow cytometry and cell sorting, 2nd edn. Springer, Berlin, pp 293–317

    Chapter  Google Scholar 

  129. Harkins KR, Galbraith DW (1987) Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry 8:60–71

    Article  CAS  PubMed  Google Scholar 

  130. Galbraith DW (2009) Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytometry A 75A:692–698

    Article  CAS  Google Scholar 

  131. Shapiro H (2003) Practical flow cytometry, 4th edn. John Wiley, Hoboken

    Book  Google Scholar 

  132. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353

    Article  CAS  PubMed  Google Scholar 

  133. Zheng GXY et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:Article Number: 14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed Central  Google Scholar 

  134. Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248

    Article  CAS  PubMed  Google Scholar 

  135. Borges F, Rui Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD (2012) FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods 8:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 12:1032–1037

    Article  CAS  Google Scholar 

  137. Misra CS, Santos MR, Rafael-Fernandes M, Martins NP, Monteiro M, Becker JD (2019) Transcriptomics of Arabidopsis sperm cells at single-cell resolution. Plant Reprod 32:29–38

    Article  CAS  PubMed  Google Scholar 

  138. Yelina NE, Ziolkowski PA, Miller N, Zhao XH, Kelly KA, Munoz DF, Mann DJ, Copenhaver GP, Henderson IR (2013) High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana. Nat Protoc 8:2119–2134

    Article  CAS  PubMed  Google Scholar 

  139. Ziolkowski PA, Henderson IR (2017) Interconnections between meiotic recombination and sequence polymorphism in plant genomes. New Phytol 213:1022–1029

    Article  CAS  PubMed  Google Scholar 

  140. Li F, De Storme N, Geelen D (2017) Dynamics of male meiotic recombination frequency during plant development using fluorescent tagged lines in Arabidopsis thaliana. Sci Rep 7:Article number: 42535

    Article  PubMed Central  CAS  Google Scholar 

  141. Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Part of the development of the methods described in this chapter involved support to DG from the NSF Plant Genome Research program, and the National Institutes of Health. DG also acknowledges on-going support from the USDA through the University of Arizona College of Agriculture and Life Sciences. We also acknowledge support from the Chinese National Key Research and Development Program (2OI6YFDOl0l006), the National Natural Science Foundation of China (31770300), the Program for Innovative Research Teams in Science and Technology at a University of Henan Province (18IRTSTHNO23), and the 111 Project (D16014) of China. We finally thank Lisa Villalobos-Menuey (Beckman-Coulter), Laurie Appling (SONY), and Matt Alexander and Alex Rodriguez (BioRad), for valuable assistance in generating the data of Figs. 2, 3, and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Galbraith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galbraith, D.W., Sun, G. (2021). Flow Cytometry and Sorting in Arabidopsis. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics