Skip to main content

Nanodisc Reconstitution of Channelrhodopsins Heterologously Expressed in Pichia pastoris for Biophysical Investigations

  • Protocol
  • First Online:
Channelrhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2191))

Abstract

For a successful characterization of channelrhodopsins with biophysical methods like FTIR, Raman, EPR and NMR spectroscopy and X-ray crystallography, large amounts of purified protein are requested. For proteins of eukaryotic origin, which are poorly expressing in bacterial systems or not at all, the yeast Pichia pastoris represents a promising alternative for overexpression. Here we describe the methods for cloning, overexpression and mutagenesis as well as the purification procedures for channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2), channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) and the scaffold protein MSP1D1 for reconstitution of the membrane proteins into nanodiscs. Finally, protocols are provided to study CaChR1 by FTIR difference spectroscopy and by time-resolved UV/Vis spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  Google Scholar 

  2. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  Google Scholar 

  3. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  Google Scholar 

  4. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  Google Scholar 

  5. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  Google Scholar 

  6. Hoffmann A, Hildebrandt V, Heberle J, Buldt G (1994) Photoactive mitochondria: in vivo transfer of a light-driven proton pump into the inner mitochondrial membrane of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 91:9367–9371

    Article  CAS  Google Scholar 

  7. Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88:119–128

    Article  CAS  Google Scholar 

  8. Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) NEUROSCIENCE. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    Article  CAS  Google Scholar 

  9. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069

    Article  CAS  Google Scholar 

  10. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  Google Scholar 

  11. Lorenz-Fonfria VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A 110:E1273–E1281

    Article  CAS  Google Scholar 

  12. Krause N, Engelhard C, Heberle J, Schlesinger R, Bittl R (2013) Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 587:3309–3313

    Article  CAS  Google Scholar 

  13. Schlesinger R, Cousin A, Granzin J, Batra-Safferling R (2017) Expression and purification of arrestin in yeast Saccharomyces cerevisiae. Methods Cell Biol 142:159–172

    Article  CAS  Google Scholar 

  14. Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques 50:325–328

    Article  Google Scholar 

  15. Bayburt TH, Sligar SG (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc Natl Acad Sci U S A 99:6725–6730

    Article  CAS  Google Scholar 

  16. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12:2476–2481

    Article  CAS  Google Scholar 

  17. Lórenz-Fonfría VA, Heberle J (2014) Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy. J Vis Exp 88:e51622

    Google Scholar 

  18. Lorenz-Fonfria VA, Muders V, Schlesinger R, Heberle J (2014) Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. J Chem Phys 141:22D507

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nils Krause and Vera Muders for developing protocols and Kirsten Hoffmann and Dorothea Heinrich for technical assistance. Financial support was granted from the Deutsche Forschungsgemeinschaft (SFB1078 TP B4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Schlesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Walter, M., Schlesinger, R. (2021). Nanodisc Reconstitution of Channelrhodopsins Heterologously Expressed in Pichia pastoris for Biophysical Investigations. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0830-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0829-6

  • Online ISBN: 978-1-0716-0830-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics