Skip to main content

Siamese Neural Networks: An Overview

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2190))

Abstract

Similarity has always been a key aspect in computer science and statistics. Any time two element vectors are compared, many different similarity approaches can be used, depending on the final goal of the comparison (Euclidean distance, Pearson correlation coefficient, Spearman’s rank correlation coefficient, and others). But if the comparison has to be applied to more complex data samples, with features having different dimensionality and types which might need compression before processing, these measures would be unsuitable. In these cases, a siamese neural network may be the best choice: it consists of two identical artificial neural networks each capable of learning the hidden representation of an input vector. The two neural networks are both feedforward perceptrons, and employ error back-propagation during training; they work parallelly in tandem and compare their outputs at the end, usually through a cosine distance. The output generated by a siamese neural network execution can be considered the semantic similarity between the projected representation of the two input vectors. In this overview we first describe the siamese neural network architecture, and then we outline its main applications in a number of computational fields since its appearance in 1994. Additionally, we list the programming languages, software packages, tutorials, and guides that can be practically used by readers to implement this powerful machine learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Homayouni R, Heinrich K, Wei L, et al (2004) Gene clustering by latent semantic indexing of MEDLINE abstracts. Bioinformatics 21(1):104–115

    Article  PubMed  CAS  Google Scholar 

  2. Benesty J, Chen J, Huang Y, et al (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, Berlin, pp 1–4

    Google Scholar 

  3. Binet A (1904) The proof and measurement of association between two things; general intelligence objectively determined and measured. L’année psychologique 11(1):623–624

    Google Scholar 

  4. Chicco D, Ciceri E, Masseroli M (2014) Extended Spearman and Kendall coefficients for gene annotation list correlation. In: Proceedings of CIBB 2014 – the 11th international meeting on computational intelligence methods for bioinformatics and biostatistics, vol 8623. Springer, Berlin, pp 19–32

    Google Scholar 

  5. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

    Article  Google Scholar 

  6. Goodman LA, Kruskal WH (1963) Measures of association for cross classifications III: approximate sampling theory. J Am Stat Assoc 58(302):310–364

    Article  Google Scholar 

  7. Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11:95–130

    Article  Google Scholar 

  8. Jiang X, Nariai N, Steffen M, et al (2008) Combining hierarchical inference in ontologies with heterogeneous data sources improves gene function prediction. In: Proceedings of IEEE BIBM 2008 – international conference on bioinformatics and biomedicine, pp 411–416

    Google Scholar 

  9. Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008

    Google Scholar 

  10. Lin D (1998) An information-theoretic definition of similarity. In: Proceedings of ICML 1998 – the 15th international conference on machine learning, vol 98. Citeseer, pp 296–304

    Google Scholar 

  11. Chicco D, Palluzzi F, Masseroli M (2017) Novelty indicator for enhanced prioritization of predicted Gene Ontology annotations. IEEE/ACM Trans Comput Biol Bioinf 15(3):954–965

    Article  Google Scholar 

  12. Chicco D, Masseroli M (2015) Ontology-based prediction and prioritization of gene functional annotations. IEEE/ACM Trans Comput Biol Bioinf 13(2):248–260

    Article  Google Scholar 

  13. Landauer TK, Dumais S (2008) Latent semantic analysis. Scholarpedia 3(11):4356

    Article  Google Scholar 

  14. Chicco D, Masseroli M (2015) Software suite for gene and protein annotation prediction and similarity search. IEEE/ACM Trans Comput Biol Bioinf 12(4):837–843

    Article  CAS  Google Scholar 

  15. Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bromley J, Guyon I, LeCun Y, et al (1994) Signature verification using a “siamese” time delay neural network. Adv Neural Inf Process Syst 6:737–744

    Google Scholar 

  17. Pautasso M (2013) Ten simple rules for writing a literature review. PLoS Comput Biol 9(7):1–4

    Article  CAS  Google Scholar 

  18. Baldi P, Chauvin Y (1993) Neural networks for fingerprint recognition. Neural Comput 5(3):402–418

    Article  Google Scholar 

  19. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  CAS  PubMed  Google Scholar 

  20. Cartwright HM (2008) Artificial neural networks in biology and chemistry – the evolution of a new analytical tool. Methods Mol Biol 458:1–13

    Article  CAS  PubMed  Google Scholar 

  21. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  22. Freund Y, Schapire RE (1999) Large margin classification using the perceptron algorithm. Mach Learn 37(3):277–296

    Article  Google Scholar 

  23. Cartwright HM (2015) Artificial neural networks, 2nd edn., vol 1260. Methods in molecular biology. Springer, New York City

    Google Scholar 

  24. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cogn Model 5(3):1

    Google Scholar 

  25. Jurman G, Riccadonna S, Furlanello C (2012) A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE 7(8):e41882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halligan S, Altman DG, Mallett S (2015) Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. Eur Radiol 25(4):932–939

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chicco D, Rovelli C (2019) Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS ONE 14(1):e0208737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cangelosi D, Pelassa S, Morini M, et al (2016) Artificial neural network classifier predicts neuroblastoma patients’ outcome. BMC Bioinf 17(12):347

    Article  CAS  Google Scholar 

  29. Maggio V, Chierici M, Jurman G, et al (2018) Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk neuroblastoma. PLoS ONE 13(12):e0208924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Google (2019) Google Scholar. https://scholar.google.com. Accessed 1 Aug 2019

  31. Elsevier (2019) Scopus. https://www.scopus.com. Accessed 1 Aug 2019

  32. Dagstuhl S (2019) Digital Bibliography & Library Project (DBLP) Computer Science Bibliography. https://dblp.uni-trier.de. Accessed 1 Aug 2019

  33. National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine (NLM) (2019) PubMed. https://www.ncbi.nlm.nih.gov/pubmed/. Accessed 1 Aug 2019

  34. Ernst M (2019) Washington.edu – choosing a venue: conference or journal? https://homes.cs.washington.edu/~mernst/advice/conferences-vs-journals.html. Accessed 1 Aug 2019

  35. Thiolliere R, Dunbar E, Synnaeve G, et al (2015) A hybrid dynamic time warping-deep neural network architecture for unsupervised acoustic modeling. In: Proceedings of INTERSPEECH 2015 – the 16th annual conference of the international Speech Communication Association

    Google Scholar 

  36. Pitt MA, Johnson K, Hume E, et al (2005) The Buckeye corpus of conversational speech: labeling conventions and a test of transcriber reliability. Speech Commun 45(1):89–95

    Article  Google Scholar 

  37. Barnard E, Davel MH, Heerden Cv, et al (2014) The NCHLT speech corpus of the South African languages. In: Spoken language technologies for under-resourced languages

    Google Scholar 

  38. Chen K, Salman A (2011) Extracting speaker-specific information with a regularized siamese deep network. In: Advances in neural information processing systems, pp 298–306

    Google Scholar 

  39. Manocha P, Badlani R, Kumar A, et al (2018) Content-based representations of audio using siamese neural networks. In: Proceedings of ICASSP 2018 – the 2018 IEEE international conference on acoustics, speech and signal processing. IEEE, Piscataway, pp 3136–3140

    Google Scholar 

  40. Zhang Y, Pardo B, Duan Z (2018) Siamese style convolutional neural networks for sound search by vocal imitation. IEEE/ACM Trans Audio Speech Lang Process 27(2):429–441

    Article  CAS  Google Scholar 

  41. Cartwright M, Pardo B (2015) Vocalsketch: vocally imitating audio concepts. In: Proceedings of CHI 2015 – the 33rd annual ACM conference on human factors in computing systems. ACM, New York, pp 43–46

    Google Scholar 

  42. Švec J, Šmídl L, Psutka JV (2017) An analysis of the RNN-based spoken term detection training. In: Proceedings of SPECOM 2017 – the 19th international conference on speech and computer Specom. Springer, Berlin, pp 119–129

    Google Scholar 

  43. Shon S, Ali A, Glass J (2017) MIT-QCRI Arabic dialect identification system for the 2017 multi-genre broadcast challenge. In: Proceedings of IEEE ASRU 2017 – the 2017 IEEE workshop on automatic speech recognition and understanding. IEEE, Piscataway, pp 374–380

    Google Scholar 

  44. Gündoğdu B, Yusuf B, Saraçlar M (2017) Joint learning of distance metric and query model for posteriorgram-based keyword search. IEEE J Sel Top Sign Process 11(8):1318–1328

    Article  Google Scholar 

  45. Siddhant A, Jyothi P, Ganapathy S (2017) Leveraging native language speech for accent identification using deep siamese networks. In: Proceedings of ASRU 2017 – the 2017 IEEE workshop on automatic speech recognition and understanding. IEEE, Piscataway, pp 621–628

    Google Scholar 

  46. Zeghidour N, Synnaeve G, Usunier N, et al (2016) Joint learning of speaker and phonetic similarities with siamese networks. In: Proceedings of INTERSPEECH 2016 – the 17th annual conference of the international Speech Communication Association, pp 1295–1299

    Google Scholar 

  47. Zheng W, Yang L, Genco RJ, et al (2018) SENSE: siamese neural network for sequence embedding and alignment-free comparison. Bioinformatics 35(11):1820–1828

    Article  CAS  PubMed Central  Google Scholar 

  48. Kariin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genetics 11(7):283–290

    Article  Google Scholar 

  49. Clemente JC, Pehrsson EC, Blaser MJ, et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1(3):e1500183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jindal S, Gupta G, Yadav M, et al (2017) Siamese networks for chromosome classification. In: Proceedings of ICCV 2017 – the IEEE international conference on computer vision, pp 72–81

    Google Scholar 

  51. Szubert B, Cole JE, Monaco C, et al (2019) Structure-preserving visualisation of high dimensional single-cell datasets. Sci Rep 9(1):8914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res9:2579–2605

    Google Scholar 

  53. Fernandes K, Chicco D, Cardoso JS, et al (2018) Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. Peer J Comput Sci 4:e154

    Article  Google Scholar 

  54. Jeon M, Park D, Lee J, et al (2019) ReSimNet: drug response similarity prediction using siamese neural networks. Bioinformatics 35:5249–5256

    Article  CAS  PubMed  Google Scholar 

  55. Sun Z, He Y, Gritsenko A, et al (2017) Deep spectral descriptors: learning the point-wise correspondence metric via siamese deep neural networks. arXiv preprint arXiv:1710.06368

    Google Scholar 

  56. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: Proceedings of CVPR 2005 – the 2005 IEEE Computer Society conference on computer vision and pattern recognition, pp 539–546

    Google Scholar 

  57. Paisios N, Subramanian L, Rubinsteyn A (2012) Choosing which clothes to wear confidently: a tool for pattern matching. In: Proceedings of pervasive 2012 – the 10th conference on pervasive computing, workshop on frontiers in accessibility for pervasive computing

    Google Scholar 

  58. Yi D, Lei Z, Liao S, et al (2014) Deep metric learning for person re-identification. In: Proceedings of ICPR 2014 – the 22nd international conference on pattern recognition. IEEE, Piscataway, pp 34–39

    Google Scholar 

  59. Lefebvre G, Garcia C (2013) Learning a bag of features based nonlinear metric for facial similarity. In: Proceedings of IEEE AVSS 2013 – the 10th international conference on advanced video and signal based surveillance, pp 238–243

    Google Scholar 

  60. Berlemont S, Lefebvre G, Duffner S, et al (2015) Siamese neural network based similarity metric for inertial gesture classification and rejection. In: Proceedings of IEEE FG 2015 – the 11th international conference and workshops on automatic face and gesture recognition, vol 1, pp 1–6

    Google Scholar 

  61. Kassis M, Nassour J, El-Sana J (2017) Alignment of historical hand-written manuscripts using siamese neural network. In: Proceedings of ICDAR 2017 – the 14th IAPR international conference on document analysis and recognition, vol 1. IEEE, Piscataway, pp 293–298

    Google Scholar 

  62. Liu X, Zhou Y, Zhao J, et al (2019) Siamese convolutional neural networks for remote sensing scene classification. IEEE Geosci Remote Sens Lett 16:1200–1204

    Article  Google Scholar 

  63. He H, Chen M, Chen T, et al (2018) Matching of remote sensing images with complex background variations via Siamese convolutional neural network. Remote Sens 10(2):355

    Article  Google Scholar 

  64. Taigman Y, Yang M, Ranzato M, et al (2014) DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of CVPR 2014 – the IEEE conference on computer vision and pattern recognition, pp 1701–1708

    Google Scholar 

  65. Sabri M, Kurita T (2018) Facial expression intensity estimation using Siamese and triplet networks. Neurocomputing 313:143–154

    Article  Google Scholar 

  66. Hanif SM (2019) Patch match networks: improved two-channel and Siamese networks for image patch matching. Pattern Recognit Lett 120:54–61

    Article  Google Scholar 

  67. Brown M, Hua G, Winder S (2010) Discriminative learning of local image descriptors. IEEE Trans Pattern Anal Mach Intell 33(1):43–57

    Article  Google Scholar 

  68. Guyon I, Bromley J, Matić N, et al (1996) Penacée: a neural net system for recognizing on-line handwriting. In: Models of neural networks III. Springer, Berlin, pp 255–279

    Chapter  Google Scholar 

  69. Grafilon P, Aguilar IB, Lavarias ED, et al (2017) A signature comparing android mobile application utilizing feature extracting algorithms. Int J Sci Technol Res 6(8):45–50

    Google Scholar 

  70. Du W, Fang M, Shen M (2017) Siamese convolutional neural networks for authorship verification. Tech. rep. Stanford University

    Google Scholar 

  71. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

    Google Scholar 

  72. Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: Proceedings of CVPR 2015 – the 2015 IEEE conference on computer vision and pattern recognition, pp 1–9

    Google Scholar 

  73. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of CVPR 2016 – the 2015 IEEE conference on computer vision and pattern recognition, pp 770–778

    Google Scholar 

  74. Marti UV, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5(1):39–46

    Article  Google Scholar 

  75. Dey S, Dutta A, Toledo JI, et al (2017) SigNet: convolutional siamese network for writer independent offline signature verification. arXiv preprint arXiv:1707.02131

    Google Scholar 

  76. State University of New York at Buffalo, Center of Excellence for Document Analysis and Recognition (2019) Cedar.buffalo.edu/databases – CEDAR, Resources. https://cedar.buffalo.edu/Databases/. Accessed 9 Aug 2019

  77. Ahrabian K, Babaali B (2018) Usage of autoencoders and Siamese networks for online handwritten signature verification. Neural Comput Appl 31:1–14

    Google Scholar 

  78. Malik MI, Liwicki M, Alewijnse L, et al (2013) ICDAR 2013 competitions on signature verification and writer identification for on-and offline skilled forgeries (SigWiComp 2013). In: Proceedings of ICDAR 2013 – the 12th international conference on document analysis and recognition. IEEE, Piscataway, pp 1477–1483

    Google Scholar 

  79. Malik MI (2019) Uab.es – signature verification and writer identification competitions for on- and offline skilled forgeries. http://tc11.cvc.uab.es/datasets/SigWiComp2013_1. Accessed 9 Aug 2019

  80. Koch G, Zemel R, Salakhutdinov R (2015) Siamese neural networks for one-shot image recognition. In: Proceedings of ICML 2015 – the 32nd international conference on machine learning, deep learning workshop, vol 2

    Google Scholar 

  81. Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept learning through probabilistic program induction. Science 350(6266):1332–1338

    Article  CAS  PubMed  Google Scholar 

  82. Doukkali F (2019) TowardsDataScience.com – One-shot learning: face recognition using siamese neural network. https://towardsdatascience.com/one-shot-learning-face-recognition-using-siamese-neural-network-a13dcf739e. Accessed 31 July 2019

  83. Bouma S (2019) SorenBouma.github.io – One shot learning and siamese networks in Keras. https://sorenbouma.github.io/blog/oneshot/. Accessed 8 Aug 2019

  84. Wang J, Fang Z, Lang N, et al (2017) A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput Biol Med 84:137–146

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang J, Nishikawa RM, Yang Y (2016) Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model. Med Phys 43(1):159–170

    Article  PubMed  Google Scholar 

  86. Parajuli N, Lu A, Stendahl JC, et al (2017) Flow network based cardiac motion tracking leveraging learned feature matching. In: Proceedings of MIC-CAI 2017 – the 20th international conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 279–286

    Google Scholar 

  87. Chung YA, Weng WH (2017) Learning deep representations of medical images using siamese CNNs with application to content-based image retrieval. arXiv preprint arXiv:1711.08490

    Google Scholar 

  88. Zeng X, Chen H, Luo Y, et al (2019) Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access 7:30744–30753

    Article  Google Scholar 

  89. Team K (2019) Kaggle.com – Diabetic retinopathy detection. https://www.kaggle.com/c/diabetic-retinopathy-detection/. Accessed 9 Aug 2019

  90. Wang J, Yang Y (2018) A context-sensitive deep learning approach for microcalcification detection in mammograms. Pattern Recognit 78:12–22

    Article  PubMed  PubMed Central  Google Scholar 

  91. Patil SM, Nigam A, Bhavsar A, et al (2017) Siamese LSTM based fiber structural similarity network (FS2Net) for rotation invariant brain tractography segmentation. arXiv preprint arXiv:1712.09792

    Google Scholar 

  92. Liu CF, Padhy S, Ramachandran S, et al (2019) Using deep siamese neural networks for detection of brain asymmetries associated with Alzheimer’s disease and mild cognitive impairment. Magn Reson Imaging 64:190–199

    Article  PubMed  PubMed Central  Google Scholar 

  93. Soldan A, Pettigrew C, Lu Y, et al (2015) Relationship of medial temporal lobe atrophy, APOE genotype, and cognitive reserve in preclinical Alzheimer’s disease. Human Brain Mapp 36(7):2826–2841

    Article  Google Scholar 

  94. Zou Y, Li J, Chen X, et al (2018) Learning Siamese networks for laser vision seam tracking. J Opt Soc Am A 35(11):1805–1813

    Article  Google Scholar 

  95. De Baets L, Develder C, Dhaene T, et al (2019) Detection of unidentified appliances in non-intrusive load monitoring using siamese neural networks. Int J Electr Power Energy Syst 104:645–653

    Article  Google Scholar 

  96. Utkin LV, Zhuk YA, Zaborovsky VS (2017) An anomalous behavior detection of a robot system by using a hierarchical Siamese neural network. In: Proceedings of IEEE SCM 2017 – the XX IEEE international conference on soft computing and measurements, pp 630–634

    Google Scholar 

  97. Utkin LV, Zaborovsky VS, Popov SG (2017) Siamese neural network for intelligent information security control in multi-robot systems. Autom Control Comput Sci 51(8):881–887

    Article  Google Scholar 

  98. Zeng A, Song S, Yu KT, et al (2018) Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In: Proceedings of ICRA 2018 – the 2018 IEEE international conference on robotics and automation, pp 1–8

    Google Scholar 

  99. Berlemont S, Lefebvre G, Duffner S, et al (2018) Class-balanced siamese neural networks. Neurocomputing 273:47–56

    Article  Google Scholar 

  100. Ruffieux S, Lalanne D, Mugellini E (2013) ChAirGest: a challenge for multimodal mid-air gesture recognition for close HCI. In: Proceedings of ICMI 2014 – the 15th ACM on international conference on multimodal interaction. ACM, New York, pp 483–488

    Google Scholar 

  101. Zhao L, Shang Z, Zhao L, et al (2018) Siamese dense neural network for software defect prediction with small data. IEEE Access 7:7663–7677

    Article  Google Scholar 

  102. Zhao L, Shang Z, Zhao L, et al (2019) Software defect prediction via cost-sensitive Siamese parallel fully-connected neural networks. Neurocomputing 352:64–74

    Article  Google Scholar 

  103. Gray D, Bowes D, Davey N, et al (2012) Reflections on the NASA MDP data sets. IET Softw 6(6):549–558

    Article  Google Scholar 

  104. Yih Wt, Toutanova K, Platt JC, et al (2011) Learning discriminative projections for text similarity measures. In: Proceedings of CoNLL 2011 – the 15th conference on computational natural language learning. Association for Computational Linguistics, Stroudsburg, pp 247–256

    Google Scholar 

  105. Long R, Wei C (2015) Application of neural networks in the semantic parsing re-ranking problem. Tech. rep. Stanford University

    Google Scholar 

  106. Kumar V, Khattar D, Gairola S, et al (2018) Identifying clickbait: a multi-strategy approach using neural networks. In: Proceedings of SIGIR 2018 – the 41st international ACM SIGIR conference on research & development in information retrieval, pp 1225–1228

    Google Scholar 

  107. Potthast M, Gollub T, Komlossy K, et al (2018) Crowdsourcing a large corpus of clickbait on Twitter. In: Proceedings of COLING 2018 – the 27th international conference on computational linguistics, pp 1498–1507

    Google Scholar 

  108. Zhu W, Yao T, Ni J, et al (2018) Dependency-based Siamese long short-term memory network for learning sentence representations. PLoS ONE 13(3):e0193919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Marelli M, Menini S, Baroni M, et al (2014) A SICK cure for the evaluation of compositional distributional semantic models. In: Proceedings of LREC 2014 – the 9th international conference on language resources and evaluation. European Languages Resources Association, Paris, pp 216–223

    Google Scholar 

  110. Sandouk U, Chen K (2016) Learning contextualized semantics from co-occurring terms via a Siamese architecture. Neural Netw 76:65–96

    Article  PubMed  Google Scholar 

  111. Sandouk U, Chen K (2017) Learning contextualized music semantics from tags via a siamese neural network. ACM Trans Intell Syst Technol 8(2):24

    Article  Google Scholar 

  112. González J, Encarna S, García-Granada F, et al (2019) Siamese hierarchical attention networks for extractive summarization. J Intell Fuzzy Syst 36(5):4599–4607

    Article  Google Scholar 

  113. Das A, Yenala H, Chinnakotla M, et al (2016) Together we stand: siamese networks for similar question retrieval. In: Proceedings of ACL 2016 – the 54th annual meeting of the Association for Computational Linguistics (volume 1: long papers), pp 378–387

    Google Scholar 

  114. Ryoo MS, Kim K, Yang HJ (2018) Extreme low resolution activity recognition with multi-siamese embedding learning. In: Proceedings of AAAI 2018 – the 32nd AAAI conference on artificial intelligence

    Google Scholar 

  115. Liu X, Liu W, Mei T, et al (2017) PROVID: progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans Multimedia 20(3):645–658

    Article  Google Scholar 

  116. Kovač J, Štruc V, Peer P (2019) Frame-based classification for cross-speed gait recognition. Multimedia Tools Appl 78(5):5621–5643

    Article  Google Scholar 

  117. Makihara Y, Mannami H, Tsuji A, et al (2012) The OU-ISIR gait database comprising the treadmill dataset. Inf Process Soc Jpn Trans Comput Vis Appl 4:53–62

    Google Scholar 

  118. Liu W, Zhang C, Ma H, et al (2018) Learning efficient spatial-temporal gait features with deep learning for human identification. Neuroinformatics 16(3–4):457–471

    Article  PubMed  Google Scholar 

  119. Zhang C, Liu W, Ma H, et al (2016) Siamese neural network based gait recognition for human identification. In: Proceedings of ICASSP 2016 – the 41st IEEE international conference on acoustics, speech and signal processing, pp 2832–2836

    Google Scholar 

  120. Zhang H, Ni W, Yan W, et al (2018) Visual tracking using Siamese convolutional neural network with region proposal and domain specific updating. Neurocomputing 275:2645–2655

    Article  Google Scholar 

  121. Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  PubMed  Google Scholar 

  122. Lee S, Kim E (2018) Multiple object tracking via feature pyramid Siamese networks. IEEE Access 7:8181–8194

    Article  Google Scholar 

  123. Yang L, Jiang P, Wang F, et al (2018) Robust real-time visual object tracking via multi-scale fully convolutional Siamese networks. Multimedia Tools Appl 77(17):22131–22143

    Article  Google Scholar 

  124. Kristan M, Matas J, Leonardis A, et al (2015) The visual object tracking vot2015 challenge results. In: Proceedings of ICCV 2015 – the IEEE international conference on computer vision workshops, pp 1–23

    Google Scholar 

  125. Wu L, Wang Y, Gao J, et al (2019) Where-and-when to look: deep siamese attention networks for video-based person re-identification. IEEE Trans Multimedia 21(6):1412–1424

    Article  Google Scholar 

  126. Kuai Y, Wen G, Li D (2018) When correlation filters meet fully-convolutional Siamese networks for distractor-aware tracking. Signal Process Image Commun 64:107–117

    Article  Google Scholar 

  127. Wang Q, Gao J, Yuan Y (2018) Embedding structured contour and location prior in siamesed fully convolutional networks for road detection. IEEE Trans Intell Transp Syst 19(1):230–241

    Article  Google Scholar 

  128. Mobahi H, Collobert R, Weston J (2009) Deep learning from temporal coherence in video. In: Proceedings of ICML 2009 – the 26th annual international conference on machine learning, pp 737–744

    Google Scholar 

  129. Masci J, Bronstein MM, Bronstein AM, et al (2013) Multimodal similarity-preserving hashing. IEEE Trans Pattern Anal Mach Intell 36(4):824–830

    Article  Google Scholar 

  130. Liu C (2013) Probabilistic Siamese Networks for Learning Representations. PhD thesis, University of Toronto

    Google Scholar 

  131. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  132. Shaham U, Lederman RR (2018) Learning by coincidence: Siamese networks and common variable learning. Pattern Recognit 74:52–63

    Article  Google Scholar 

  133. Ibraheem AO (2019) On the choice of inter-class distance maximization term in siamese neural networks. Neural Process Lett 49(3):1527–1541

    Article  Google Scholar 

  134. Hadsell R, Chopra S, LeCun Y (2006) Dimensionality reduction by learning an invariant mapping. In: Proceedings of CVPR 2006 – the 2006 IEEE Computer Society conference on computer vision and pattern recognition, vol 2. IEEE, Piscataway, pp 1735–1742

    Google Scholar 

  135. Zheng L, Duffner S, Idrissi K, et al (2016) Pairwise identity verification via linear concentrative metric learning. IEEE Trans Cybern 48(1):324–335

    Article  PubMed  Google Scholar 

  136. Abadi M, Barham P, Chen J, et al (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of OSDI 2016 – the 12th USENIX symposium on operating systems design and implementation, pp 265–283

    Google Scholar 

  137. TensorFlow (2019) An end-to-end open source machine learning platform. https://www.tensorflow.org. Accessed 1 Aug 2019

  138. Paszke A, Gross S, Chintala S, et al (2017) Automatic differentiation in PyTorch. In: Proceedings of NIPS 2017 – the 31st conference on neural information processing systems, autodiff workshop

    Google Scholar 

  139. PyTorch (2019) From research to production. https://www.pytorch.org. Accessed 1 Aug 2019

  140. Collobert R, Bengio S, Mariéthoz J (2002) Torch: a modular machine learning software library. Tech. rep. Idiap Research Institute

    Google Scholar 

  141. Torch (2019) A scientific computing framework for LuaJIT. https://www.torch.ch. Accessed 1 Aug 2019

  142. Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Limited, Birmingham.

    Google Scholar 

  143. Keras (2019) The Python deep learning library. https://www.keras.io. Accessed 1 Aug 2019

  144. Chen T, Li M, Li Y, et al (2015) MXnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274

    Google Scholar 

  145. MXNet (2019) Apache MXNet (Incubating), a flexible and efficient library for deep learning. https://mxnet.apache.org. Accessed 1 Aug 2019

  146. Ierusalimschy R (2006) Programming in Lua. Feisty Duck Digital Book Distribution, London

    Google Scholar 

  147. Kaggle (2019) The state of data science & machine learning 2017. https://www.kaggle.com/surveys/2017. Accessed 6 Aug 2019

  148. Falbel DD, Allaire JJ, Chollet F, et al (2019) Keras – R interface to Keras. https://keras.rstudio.com/. Accessed 22 Aug 2019

  149. Hale J (2019) TowardsDataScience.com – Deep learning framework power scores 2018. https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a. Accessed 31 July 2019

  150. Amant KS, Still B (2007) Handbook of research on open source software: technological, economic, and social perspectives. Information Science Reference, London

    Book  Google Scholar 

  151. Holländer B (2019) BecomingHuman.ai – Siamese networks: algorithm, applications and PyTorch implementation. https://becominghuman.ai/siamese-networks-algorithm-applications-and-pytorch-implementation-4ffa3304c18. Accessed 31 July 2019

  152. Deng L (2012) The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process Mag 29(6):141–142

    Article  Google Scholar 

  153. Dhatt A (2019) Kaggle.com – Siamese neural networks, Python notebook using data from Package Data. https://www.kaggle.com/arpandhatt/siamese-neural-networks. Accessed 31 July 2019

  154. Thoma M (2019) Martin-Thoma.com – Siamese Networks. https://martin-thoma.com/siamese-networks/. Accessed 31 July 2019

  155. Reni RD (2019) InnovationIncubator.com – Siamese neural network (with PyTorch code example). https://innovationincubator.com/siamese-neural-network-with-pytorch-code-example/. Accessed 31 July 2019

  156. Liwicki M, Malik MI, Van Den Heuvel CE, et al (2011) Signature verification competition for online and offline skilled forgeries (SigComp2011). In: Proceedings of ICDAR 2011 – the 11th international conference on document analysis and recognition. IEEE, Piscataway, pp 1480–1484

    Google Scholar 

  157. Séguin J (2019) Bioinfo.iric.ca –implementing a “siamese” neural network with Mariana 1.0. https://bioinfo.iric.ca/implementing-a-siamese-neural-network-with-mariana-1-0/. Accessed 31 July 2019

  158. Al-Rfou R, Alain G, Almahairi Aea (2016) Theano: a Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688

    Google Scholar 

  159. Gee S (2019) I-Programmer.info – Theano to cease development after version 1.0. https://www.i-programmer.info/news/105-artificial-intelligence/11183-theano-to-step-down-after-version-10.html. Accessed 8 Aug 2019

  160. Various Authors (2019) GitHub.com – topic: siamese-neural-network, 27 repositories. https://github.com/topics/siamese-neural-network. Accessed 31 July 2019

  161. Research B (2019) GitHub.com/beringresearch – ivis. https://github.com/beringresearch/ivis. Accessed 8 Aug 2019

  162. Latkowski T (2019) GitHub.com/tlatkowski – Siamese deep neural networks for semantic similarity. https://github.com/tlatkowski/multihead-siamese-nets. Accessed 8 Aug 2019

  163. Sugimura M (2019) TowardsDataScience.com – Siamese networks and Stuart Weitzman boots. https://towardsdatascience.com/siamese-networks-and-stuart-weitzman-boots-c414be7eff78. Accessed 31 July 2019

  164. deeplearning.ai (2019) Coursera.org – Convolutional neural networks: siamese network. https://www.coursera.org/lecture/convolutional-neural-networks/siamese-network-bjhmj. Accessed 31 July 2019

Download references

Acknowledgements

The author thanks Richard Zemel (University of Toronto) for his suggestion on siamese neural networks, Hugh M. Cartwright (Oxford University & University of Victoria) for his invitation to contribute to this book, and Trent Faultless (Toronto General Hospital) for the English proof-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Chicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chicco, D. (2021). Siamese Neural Networks: An Overview. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics