Skip to main content

Vaccine Based on Outer Membrane Vesicles Using Hydrogels as Vaccine Delivery System

  • Protocol
  • First Online:
Salmonella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2182))

Abstract

A simple procedure for obtaining outer membrane vesicles from Salmonella enterica and the use of hydrogels as vaccine delivery system is described. A heat treatment in saline solution of whole bacteria rendered the release of outer membrane vesicles containing relevant antigenic components. The immunogenicity of these antigens when administered by the intranasal route may be improved after embedment into hydrogels to increase residence half-time and thus activate the mucosal immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    Article  CAS  PubMed  Google Scholar 

  2. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vernikos G, Medini D (2014) Bexsero® chronicle. Pathog Glob Health 108(7):305–316

    Article  PubMed  PubMed Central  Google Scholar 

  4. van der Pol L, Stork M, van der Ley P (2015) Outer membrane vesicles as platform vaccine technology. Biotechnol J 10(11):1689–1706

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tan K, Li R, Huang X, Liu Q (2018) Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Front Microbiol 9:783

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schatten H, Eisenstark A (eds) (2007) Salmonella: methods and protocols, methods in molecular biology, vol 1225, 2nd edn. Springer, Heidelberg

    Google Scholar 

  7. Davis SS (2001) Nasal vaccines. Adv Drug Deliv Rev 51(1–3):21–42

    Article  CAS  PubMed  Google Scholar 

  8. Vashist A, Kaushik A, Vashist A et al (2016) Recent trends on hydrogels based drug delivery systems for infectious disease. Biomater Sci 4(11):1535–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  10. Warren L (1959) The thiobarbituric acid assay of sialic acids. J Biol Chem 234:1971–1975

    CAS  PubMed  Google Scholar 

  11. Osborn MJ (1963) Studies on the Gram-negative cell wall. I. Evidence for the role of 2-Keto-3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium. Proc Natl Acad Sci U S A 50:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  13. Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617

    Article  CAS  PubMed  Google Scholar 

  14. Merril CR, Switzer RC, Van Keuren ML (1979) Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc Natl Acad Sci U S A 76:4335–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  CAS  PubMed  Google Scholar 

  16. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Y.P. has held a Ph.D. scholarship from the “Asociación de Amigos” of the University of Navarra. This work was supported by a FIS grant PI16/00071, “Ministerio de Sanidad y Consumo” from Spain. The author would like to thank Monica Laires Rodrigues for assistance with hydrogel characterization .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gamazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pastor, Y., Ting, I., Berzosa, M., Irache, J.M., Gamazo, C. (2021). Vaccine Based on Outer Membrane Vesicles Using Hydrogels as Vaccine Delivery System. In: Schatten, H. (eds) Salmonella. Methods in Molecular Biology, vol 2182. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0791-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0791-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0790-9

  • Online ISBN: 978-1-0716-0791-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics