Skip to main content

Computational Detection of Plant RNA Editing Events

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

Computers are able to systematically exploit RNA-seq data allowing us to efficiently detect RNA editing sites in a genome-wide scale. This chapter introduces a very flexible computational framework for detecting RNA editing sites in plant organelles. This framework comprises three major steps: RNA-seq data processing, RNA read alignment, and RNA editing site detection. Each step is discussed in sufficient detail to be implemented by the reader. As a study case, the framework will be used with publicly available sequencing data to detect C-to-U RNA editing sites in the coding sequences of the mitochondrial genome of Nicotiana tabacum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castandet B, Hotto AM, Strickler SR, Stern DB (2016) ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals remodeling of the organellar transcriptome under heat stress. G3 (Bethesda) 6(9):2817–2827

    Article  CAS  Google Scholar 

  2. Cuenca A, Ross TG, Graham SW, Barrett CF, Davis JI, Seberg O, Petersen G (2016) Localized retroprocessing as a model of intron loss in the plant mitochondrial genome. Genome Biol Evol 8(7):2176–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giudice CL, Hernández I, Ceci LR, Pesole G, Picardi E (2019) RNA editing in plants: A comprehensive survey of bioinformatics tools and databases. Plant Physiol Biochem. 137:53–61

    Article  PubMed  Google Scholar 

  4. Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G (2010) Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. Nucleic Acids Res 38(14):4755–4767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu Z, Stone JD, Štorchová H, Sloan DB (2015) High transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora. BMC Genomics 16(1):938

    Article  PubMed  PubMed Central  Google Scholar 

  6. Castandet B, Choury D, Begu D, Jordana X, Araya A (2010) Intron RNA editing is essential for splicing in plant mitochondria. Nucleic Acids Res 38(20):7112–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272(6):603–615

    Article  CAS  PubMed  Google Scholar 

  8. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, Jovanovich SB, Nelson JR, Schloss JA, Schwartz DC, Vezenov DV (2009) The challenges of sequencing by synthesis. Nat Biotechnol 27(11):1013

    Article  CAS  PubMed  Google Scholar 

  11. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.

    Google Scholar 

  14. O'Neil D, Glowatz H, Schlumpberger M (2013) Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr Protoc Mol Biol 103(1):4–19

    Google Scholar 

  15. Kopylova E, Noé L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24):3211–3217

    Article  CAS  PubMed  Google Scholar 

  16. Schmieder R, Lim YW, Edwards R (2011) Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics 28(3):433–435

    Article  PubMed  PubMed Central  Google Scholar 

  17. Langmead B, Wilks C, Antonescu V, Charles R (2018 Jul 18) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty648

  18. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26(5):589–595

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL (2019) Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinform 20(1):405

    Article  Google Scholar 

  20. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14(2):135

    Article  CAS  PubMed  Google Scholar 

  23. Teng M, Love MI, Davis CA, Djebali S, Dobin A, Graveley BR, Li S, Mason CE, Olson S, Pervouchine D, Sloan CA, Wei X, Zhan L, Irizarry RA (2016) A benchmark for RNA-seq quantification pipelines. Genome Biol 17(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Marshall D (2012) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14(2):193–202

    Article  PubMed  Google Scholar 

  26. Edera AA, Gandini CL, Sanchez-Puerta MV (2018) Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol Biol 97(3):215–231

    Article  CAS  PubMed  Google Scholar 

  27. Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 9(6):e1003584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mower JP, Palmer JD (2006) Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genomics 276(3):285–293

    Article  CAS  PubMed  Google Scholar 

  29. Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci 96(26):15324–15329

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grimes BT, Sisay AK, Carroll HD, Cahoon AB (2014) Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions. BMC Genomics 15(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37(Suppl 2):W253–W259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bentolila S, Elliott LE, Hanson MR (2008) Genetic architecture of mitochondrial editing in Arabidopsis thaliana. Genetics 178(3):1693–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zehrmann A, van der Merwe JA, Verbitskiy D, Brennicke A, Takenaka M (2008) Seven large variations in the extent of RNA editing in plant mitochondria between three ecotypes of Arabidopsis thaliana. Mitochondrion 8(4):319–327

    Article  CAS  PubMed  Google Scholar 

  34. Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16(22):6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen S, Huang T, Zhou Y, Han Y, Xu M, Gu J (2017) AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinform 18(3):80

    Article  Google Scholar 

  36. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  37. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borodina T, Adjaye J, Sultan M (2011) A strand-specific library preparation protocol for RNA sequencing. Methods Enzymol. 500:79–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro A. Edera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Edera, A.A., Sanchez-Puerta, M.V. (2021). Computational Detection of Plant RNA Editing Events. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics