Skip to main content

The Role of RNA Editing in the Immune Response

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as “self” and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad S, Hur S (2015) Helicases in antiviral immunity: dual properties as sensors and effectors. Trends Biochem Sci 40(10):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bruns AM, Horvath CM (2015) LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 74(2):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997

    Article  PubMed  Google Scholar 

  6. Schmidt A et al (2009) 5′-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106(29):12067–12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goubau D et al (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514(7522):372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y et al (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17(7):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu C et al (2010) The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18(8):1032–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kato H et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205(7):1601–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. del Toro Duany Y et al (2015) MDA5-filament, dynamics and disease. Curr Opin Virol 12:20–25

    Article  PubMed  CAS  Google Scholar 

  12. Meylan E et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172

    Article  CAS  PubMed  Google Scholar 

  13. Kawai T et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988

    Article  CAS  PubMed  Google Scholar 

  14. Seth RB et al (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682

    Article  CAS  PubMed  Google Scholar 

  15. Xu LG et al (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740

    Article  CAS  PubMed  Google Scholar 

  16. Hou F et al (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu B et al (2014) Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol Cell 55(4):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu B, Hur S (2015) How RIG-I like receptors activate MAVS. Curr Opin Virol 12:91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu S et al (2013) MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. elife 2:e00785

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saha SK et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25(14):3257–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang ED, Wang CY (2010) TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One 5(2):e9172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Paz S et al (2011) A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 21(6):895–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alexopoulou L et al (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738

    Article  CAS  PubMed  Google Scholar 

  24. Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529

    Article  CAS  PubMed  Google Scholar 

  25. Diebold SS et al (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 36(12):3256–3267

    Article  CAS  PubMed  Google Scholar 

  26. Yamamoto M et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633):640–643

    Article  CAS  PubMed  Google Scholar 

  27. Medzhitov R et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    Article  CAS  PubMed  Google Scholar 

  28. Lin SC et al (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garcia MA et al (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89(6–7):799–811

    Article  CAS  PubMed  Google Scholar 

  30. Meurs E et al (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62(2):379–390

    Article  CAS  PubMed  Google Scholar 

  31. Zhang F et al (2001) Binding of double-stranded RNA to protein kinase PKR is required for dimerization and promotes critical autophosphorylation events in the activation loop. J Biol Chem 276(27):24946–24958

    Article  CAS  PubMed  Google Scholar 

  32. Dey M et al (2005) Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 122(6):901–913

    Article  CAS  PubMed  Google Scholar 

  33. de Haro C et al (1996) The eIF-2alpha kinases and the control of protein synthesis. FASEB J 10(12):1378–1387

    Article  PubMed  Google Scholar 

  34. Bass BL, Weintraub H (1987) A developmentally regulated activity that unwinds RNA duplexes. Cell 48(4):607–613

    Article  CAS  PubMed  Google Scholar 

  35. Rebagliati MR, Melton DA (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48(4):599–605

    Article  CAS  PubMed  Google Scholar 

  36. Wagner RW, Nishikura K (1988) Cell cycle expression of RNA duplex unwindase activity in mammalian cells. Mol Cell Biol 8(2):770–777

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55(6):1089–1098

    Article  CAS  PubMed  Google Scholar 

  38. Wagner RW et al (1989) A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci U S A 86(8):2647–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Polson AG et al (1991) The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry 30(49):11507–11514

    Article  CAS  PubMed  Google Scholar 

  40. Elliott MS, Trewyn RW (1984) Inosine biosynthesis in transfer RNA by an enzymatic insertion of hypoxanthine. J Biol Chem 259(4):2407–2410

    Article  CAS  PubMed  Google Scholar 

  41. Haumont E et al (1984) Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence. Nucleic Acids Res 12(6):2705–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nishikura K et al (1991) Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J 10(11):3523–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim U et al (1994) Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 269(18):13480–13489

    Article  CAS  PubMed  Google Scholar 

  44. Kim U et al (1994) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci U S A 91(24):11457–11461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Connell MA, Keller W (1994) Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci U S A 91(22):10596–10600

    Article  PubMed  PubMed Central  Google Scholar 

  46. O’Connell MA et al (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15(3):1389–1397

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen CX et al (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6(5):755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Connolly CM et al (2005) Disruption of murine Tenr results in teratospermia and male infertility. Dev Biol 278(1):13–21

    Article  CAS  PubMed  Google Scholar 

  49. Oakes E et al (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 292(10):4326–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Washburn MC et al (2014) The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome. Cell Rep 6(4):599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. George CX, Samuel CE (1999) Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A 96(8):4621–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown BA 2nd et al (2000) The Zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc Natl Acad Sci U S A 97(25):13532–13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwartz T et al (1999) Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1. J Biol Chem 274(5):2899–2906

    Article  CAS  PubMed  Google Scholar 

  54. Athanasiadis A et al (2005) The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J Mol Biol 351(3):496–507

    Article  CAS  PubMed  Google Scholar 

  55. Kim YG et al (1999) The interaction between Z-DNA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases. J Biol Chem 274(27):19081–19086

    Article  CAS  PubMed  Google Scholar 

  56. Koeris M et al (2005) Modulation of ADAR1 editing activity by Z-RNA in vitro. Nucleic Acids Res 33(16):5362–5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Placido D et al (2007) A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 15(4):395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ng SK et al (2013) Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res 41(21):9786–9799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weissbach R, Scadden AD (2012) Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 18(3):462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macbeth MR et al (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309(5740):1534–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matthews MM et al (2016) Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol 23(5):426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sommer B et al (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67(1):11–19

    Article  CAS  PubMed  Google Scholar 

  63. Burns CM et al (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387(6630):303–308

    Article  CAS  PubMed  Google Scholar 

  64. Higuchi M et al (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75(7):1361–1370

    Article  CAS  PubMed  Google Scholar 

  65. Brusa R et al (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270(5242):1677–1680

    Article  CAS  PubMed  Google Scholar 

  66. Pullirsch D, Jantsch MF (2010) Proteome diversification by adenosine to inosine RNA editing. RNA Biol 7(2):205–212

    Article  CAS  PubMed  Google Scholar 

  67. Heraud-Farlow JE et al (2017) Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol 18(1):166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Higuchi M et al (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81

    Article  CAS  PubMed  Google Scholar 

  69. Wang Q et al (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290(5497):1765–1768

    Article  CAS  PubMed  Google Scholar 

  70. Hartner JC et al (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279(6):4894–4902

    Article  CAS  PubMed  Google Scholar 

  71. Wang Q et al (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279(6):4952–4961

    Article  CAS  PubMed  Google Scholar 

  72. Hartner JC et al (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10(1):109–115

    Article  CAS  PubMed  Google Scholar 

  73. Rice GI et al (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44(11):1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aicardi J, Goutieres F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 15(1):49–54

    Article  CAS  PubMed  Google Scholar 

  75. Crow YJ et al (2006) Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet 38(8):917–920

    Article  CAS  PubMed  Google Scholar 

  76. Crow YJ et al (2006) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat Genet 38(8):910–916

    Article  CAS  PubMed  Google Scholar 

  77. Rice GI et al (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rice GI et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mannion NM et al (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9(4):1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liddicoat BJ et al (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349(6252):1115–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pestal K et al (2015) Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43(5):933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang S et al (2014) Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. J Immunol 193(7):3436–3445

    Article  CAS  PubMed  Google Scholar 

  83. Kim DD et al (2004) Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res 14(9):1719–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Osenberg S et al (2010) Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS One 5(6):e11173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Tan MH et al (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550(7675):249–254

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chung H et al (2018) Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172(4):811–824.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahmad S et al (2018) Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172(4):797–810.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oda H et al (2014) Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet 95(1):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rutsch F et al (2015) A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet 96(2):275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Buers I et al (2017) MDA5-associated neuroinflammation and the Singleton-Merten syndrome: two faces of the same type I interferonopathy spectrum. J Interf Cytokine Res 37(5):214–219

    Article  CAS  Google Scholar 

  91. Toth AM et al (2009) RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. J Biol Chem 284(43):29350–29356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okonski KM, Samuel CE (2013) Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J Virol 87(2):756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li Z et al (2012) Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the induction of interferon by measles virus. J Virol 86(7):3787–3794

    Article  PubMed  PubMed Central  Google Scholar 

  94. George CX et al (2016) Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J Biol Chem 291(12):6158–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Y, Samuel CE (2009) Adenosine deaminase ADAR1 increases gene expression at the translational level by decreasing protein kinase PKR-dependent eIF-2alpha phosphorylation. J Mol Biol 393(4):777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pfaller CK et al (2018) Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 16(11):e2006577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Clerzius G et al (2009) ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication. J Virol 83(19):10119–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nie Y et al (2007) Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. J Virol 81(2):917–923

    Article  CAS  PubMed  Google Scholar 

  99. Li Z et al (2010) RNA adenosine deaminase ADAR1 deficiency leads to increased activation of protein kinase PKR and reduced vesicular stomatitis virus growth following interferon treatment. Virology 396(2):316–322

    Article  CAS  PubMed  Google Scholar 

  100. Cachat A et al (2014) ADAR1 enhances HTLV-1 and HTLV-2 replication through inhibition of PKR activity. Retrovirology 11:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Liao GR et al (2019) Adenosine deaminase acting on RNA 1 associates with Orf virus OV20.0 and enhances viral replication. J Virol 93(7):e01912–e01918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marshall-Clarke S et al (2007) Polyinosinic acid is a ligand for toll-like receptor 3. J Biol Chem 282(34):24759–24766

    Article  CAS  PubMed  Google Scholar 

  103. Liao JY et al (2011) Inosine-containing RNA is a novel innate immune recognition element and reduces RSV infection. PLoS One 6(10):e26463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sarvestani ST et al (2014) Inosine-mediated modulation of RNA sensing by Toll-like receptor 7 (TLR7) and TLR8. J Virol 88(2):799–810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Nakahama T et al (2018) ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep 19(12):e46303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Marcu-Malina V et al (2016) ADAR1 is vital for B cell lineage development in the mouse bone marrow. Oncotarget 7(34):54370–54379

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chan TH et al (2014) A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut 63(5):832–843

    Article  CAS  PubMed  Google Scholar 

  108. Anadon C et al (2016) Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 35(33):4407–4413

    Article  CAS  PubMed  Google Scholar 

  109. Chan TH et al (2016) ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology 151(4):637–650.e10

    Article  CAS  PubMed  Google Scholar 

  110. Qin YR et al (2014) Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res 74(3):840–851

    Article  CAS  PubMed  Google Scholar 

  111. Jiang Q et al (2013) ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc Natl Acad Sci U S A 110(3):1041–1046

    Article  CAS  PubMed  Google Scholar 

  112. Bhate A et al (2019) ADAR1: a new target for immuno-oncology therapy. Mol Cell 73(5):866–868

    Article  CAS  PubMed  Google Scholar 

  113. Ishizuka JJ et al (2019) Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565(7737):43–48

    Article  CAS  PubMed  Google Scholar 

  114. Gannon HS et al (2018) Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat Commun 9(1):5450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu H et al (2019) Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat Med 25(1):95–102

    Article  CAS  PubMed  Google Scholar 

  116. Teng B et al (1993) Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260(5115):1816–1819

    Article  CAS  PubMed  Google Scholar 

  117. Salter JD et al (2016) The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci 41(7):578–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Greeve J et al (1993) Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res 34(8):1367–1383

    Article  CAS  PubMed  Google Scholar 

  119. Sharma S et al (2015) APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun 6:6881

    Article  CAS  PubMed  Google Scholar 

  120. Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4(11):868–877

    Article  CAS  PubMed  Google Scholar 

  121. Goila-Gaur R, Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Cullen BR (2006) Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80(3):1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stavrou S, Ross SR (2015) APOBEC3 proteins in viral immunity. J Immunol 195(10):4565–4570

    Article  CAS  PubMed  Google Scholar 

  124. Ikeda T et al (2008) The antiretroviral potency of APOBEC1 deaminase from small animal species. Nucleic Acids Res 36(21):6859–6871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Petit V et al (2009) Murine APOBEC1 is a powerful mutator of retroviral and cellular RNA in vitro and in vivo. J Mol Biol 385(1):65–78

    Article  CAS  PubMed  Google Scholar 

  126. Muramatsu M et al (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274(26):18470–18476

    Article  CAS  PubMed  Google Scholar 

  127. Kou T et al (2007) Expression of activation-induced cytidine deaminase in human hepatocytes during hepatocarcinogenesis. Int J Cancer 120(3):469–476

    Article  CAS  PubMed  Google Scholar 

  128. Endo Y et al (2007) Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene 26(38):5587–5595

    Article  CAS  PubMed  Google Scholar 

  129. Chaudhuri J, Alt FW (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4(7):541–552

    Article  CAS  PubMed  Google Scholar 

  130. Doi T et al (2003) De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc Natl Acad Sci U S A 100(5):2634–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nonaka T et al (2009) Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc Natl Acad Sci U S A 106(8):2747–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Honjo T et al (2012) The AID dilemma: infection, or cancer? Adv Cancer Res 113:1–44

    Article  CAS  PubMed  Google Scholar 

  133. Liang G et al (2013) RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 110(6):2246–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cantara WA et al (2011) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39(Database issue):D195–D201

    Article  CAS  PubMed  Google Scholar 

  135. Mattick JS (2010) RNA as the substrate for epigenome-environment interactions: RNA guidance of epigenetic processes and the expansion of RNA editing in animals underpins development, phenotypic plasticity, learning, and cognition. BioEssays 32(7):548–552

    Article  CAS  PubMed  Google Scholar 

  136. Kariko K et al (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    Article  CAS  PubMed  Google Scholar 

  137. Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol 36(5):1222–1230

    Article  CAS  PubMed  Google Scholar 

  138. Sioud M et al (2007) Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem Biophys Res Commun 361(1):122–126

    Article  CAS  PubMed  Google Scholar 

  139. Eberle F et al (2008) Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol 180(5):3229–3237

    Article  CAS  PubMed  Google Scholar 

  140. Jockel S et al (2012) The 2′-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med 209(2):235–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Robbins M et al (2007) 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15(9):1663–1669

    Article  CAS  PubMed  Google Scholar 

  142. Schmitt FCF et al (2017) Identification of an optimized 2′-O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8. RNA 23(9):1344–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Devarkar SC et al (2016) Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci U S A 113(3):596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schuberth-Wagner C et al (2015) A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′O-methylated self RNA. Immunity 43(1):41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen YG et al (2019) N6-methyladenosine modification controls circular RNA immunity. Mol Cell 76(1):96–109.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen YG et al (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(2):228–238.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mu X et al (2018) An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res 46(10):5239–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zust R et al (2011) Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12(2):137–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Peisley A et al (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 108(52):21010–21015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nallagatla SR, Bevilacqua PC (2008) Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA 14(6):1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bevilacqua PC, Cech TR (1996) Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35(31):9983–9994

    Article  CAS  PubMed  Google Scholar 

  153. Ryter JM, Schultz SC (1998) Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17(24):7505–7513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Morrissey DV et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007

    Article  CAS  PubMed  Google Scholar 

  155. Winkler R et al (2019) m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20(2):173–182

    Article  CAS  PubMed  Google Scholar 

  156. Tanji H et al (2015) Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22(2):109–115

    Article  CAS  PubMed  Google Scholar 

  157. Zhang Z et al (2016) Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748

    Article  CAS  PubMed  Google Scholar 

  158. Meng Z, Lu M (2017) RNA interference-induced innate immunity, off-target effect, or immune adjuvant? Front Immunol 8:331

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zillinger T, Hartmann G (2019) Targeted nanoparticle delivery of bifunctional RIG-I agonists to pancreatic cancer. Mol Ther 27(3):491–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Durbin AF et al (2016) RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. MBio 7(5). https://doi.org/10.1128/mBio.00833-16

  161. Stepanov G et al (2018) Nucleotide modifications decrease innate immune response induced by synthetic analogs of snRNAs and snoRNAs. Genes (Basel) 9(11):E531

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Hur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmad, S., Mu, X., Hur, S. (2021). The Role of RNA Editing in the Immune Response. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics